Put all layers and costs in package paddle.layer

avx_docs
Yi Wang 9 years ago
parent 8b70f0f3d0
commit 3529c6c328

@ -59,9 +59,9 @@ fA = f(paddle.layer.data(input_name="A"))
fB = f(paddle.layer.data(input_name="B"))
fQ = f(paddle.layer.data(input_name="Q"))
topology = paddle.cost.less_than(
paddle.cost.cross_entropy(fA, fQ),
paddle.cost.corss_entropy(fB, fQ))
topology = paddle.layer.less_than(
paddle.layer.cross_entropy(fA, fQ),
paddle.layer.corss_entropy(fB, fQ))
# Derive parameters required in topology and create them in model.
parameters = paddle.parameters.create(topology)
@ -94,12 +94,12 @@ def D(in);
# Construct the first topology, which contains both D and G.
# By learning this topology, we update parameters of G.
d0 = paddle.cost.should_be_false(D(G(paddle.layer.data())))
d0 = paddle.layer.should_be_false(D(G(paddle.layer.data())))
# Construct a second topology d1, which contains only D. By
# training this topology, we update parameters of D. Note
# that d1 share parameters with d0.
d1 = paddle.cost.should_be_true(D(paddle.layer.data()))
d1 = paddle.layer.should_be_true(D(paddle.layer.data()))
# Create parameters from a list of multiple topologies (models) for
# the chance to share parameters between these topologies.

Loading…
Cancel
Save