make abs op support complex types (#30375)
* rewrite abs op * rewrite abs op and remove abs in activation * remove abs register in old codes * fix abs_grad type error * fix abs double_grad output name error * modify abs_grad, abs_grad_grad functor for windows building * format code style * fix the bug of result is nan when the divisor is zero * add missing abs attr and add abs for float16revert-31068-fix_conv3d_windows
parent
138620084c
commit
358106fcb0
@ -0,0 +1,192 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/operators/abs_op.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
#include <vector>
|
||||
#ifdef PADDLE_WITH_MKLDNN
|
||||
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||
#endif
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AbsOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "abs");
|
||||
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "abs");
|
||||
|
||||
auto in_dims = ctx->GetInputDim("X");
|
||||
|
||||
ctx->SetOutputDim("Out", in_dims);
|
||||
ctx->ShareLoD("X", /*->*/ "Out");
|
||||
}
|
||||
};
|
||||
|
||||
class AbsOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X", "(Tensor), The input tensor of abs op.");
|
||||
AddOutput("Out", "(Tensor), The output tensor of abs op.");
|
||||
AddAttr<bool>("use_mkldnn",
|
||||
"(bool, default false) Only used in mkldnn kernel")
|
||||
.SetDefault(false);
|
||||
AddAttr<bool>("use_cudnn",
|
||||
"(bool, default false) Only used in cudnn kernel, need "
|
||||
"install cudnn")
|
||||
.SetDefault(false);
|
||||
AddComment(R"DOC(
|
||||
Abs Operator.
|
||||
|
||||
This operator is used to perform elementwise abs for input $X$.
|
||||
$$out = |x|$$
|
||||
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class AbsGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
|
||||
"Out@Grad", "AbsGrad");
|
||||
OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
|
||||
"X@Grad", "AbsGrad");
|
||||
|
||||
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out"));
|
||||
ctx->SetOutputDim(framework::GradVarName("X"), dout_dims);
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X");
|
||||
return framework::OpKernelType(dtype, ctx.GetPlace());
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class AbsGradMaker : public framework::SingleGradOpMaker<T> {
|
||||
public:
|
||||
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
||||
|
||||
void Apply(GradOpPtr<T> retv) const override {
|
||||
retv->SetType("abs_grad");
|
||||
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
|
||||
retv->SetInput("X", this->Input("X"));
|
||||
retv->SetAttrMap(this->Attrs());
|
||||
retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
|
||||
}
|
||||
};
|
||||
|
||||
// AbsGrad: dx=dy if x >=0 else -dy
|
||||
// AbsDoubleGrad: ddy = ddx if x >=0 else -ddx
|
||||
template <typename T>
|
||||
class AbsDoubleGradMaker : public framework::SingleGradOpMaker<T> {
|
||||
public:
|
||||
using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
||||
|
||||
protected:
|
||||
void Apply(GradOpPtr<T> op) const override {
|
||||
op->SetType("abs_grad_grad");
|
||||
// input1: x
|
||||
op->SetInput("X", this->Input("X"));
|
||||
// input2: ddx
|
||||
op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
|
||||
op->SetAttrMap(this->Attrs());
|
||||
// output: ddy
|
||||
op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
|
||||
}
|
||||
};
|
||||
|
||||
class AbsDoubleGradOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||
|
||||
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||
if (ctx->HasOutput("DDOut")) {
|
||||
ctx->ShareDim("X", "DDOut");
|
||||
ctx->ShareLoD("X", "DDOut");
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext& ctx) const override {
|
||||
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "DDX");
|
||||
return framework::OpKernelType(dtype, ctx.GetPlace());
|
||||
}
|
||||
|
||||
framework::OpKernelType GetKernelTypeForVar(
|
||||
const std::string& var_name, const framework::Tensor& tensor,
|
||||
const framework::OpKernelType& expected_kernel_type) const {
|
||||
return framework::OpKernelType(tensor.type(), tensor.place(),
|
||||
tensor.layout());
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OPERATOR(abs, ops::AbsOp, ops::AbsOpMaker,
|
||||
ops::AbsGradMaker<paddle::framework::OpDesc>,
|
||||
ops::AbsGradMaker<paddle::imperative::OpBase>);
|
||||
|
||||
REGISTER_OPERATOR(abs_grad, ops::AbsGradOp,
|
||||
ops::AbsDoubleGradMaker<paddle::framework::OpDesc>,
|
||||
ops::AbsDoubleGradMaker<paddle::imperative::OpBase>);
|
||||
|
||||
REGISTER_OPERATOR(abs_grad_grad, ops::AbsDoubleGradOp);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
abs, ops::AbsKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::AbsKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::AbsKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::AbsKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
||||
ops::AbsKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex128>);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
abs_grad, ops::AbsGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::AbsGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
||||
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsGradKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex128>);
|
||||
|
||||
REGISTER_OP_CPU_KERNEL(
|
||||
abs_grad_grad,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext, int64_t>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::float16>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CPUDeviceContext,
|
||||
paddle::platform::complex128>);
|
@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "paddle/fluid/operators/abs_op.h"
|
||||
#include "paddle/fluid/platform/complex128.h"
|
||||
#include "paddle/fluid/platform/complex64.h"
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
abs, ops::AbsKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext, int64_t>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::float16>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex128>);
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
abs_grad, ops::AbsGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::float16>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex128>);
|
||||
|
||||
REGISTER_OP_CUDA_KERNEL(
|
||||
abs_grad_grad,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::float16>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex64>,
|
||||
ops::AbsDoubleGradKernel<paddle::platform::CUDADeviceContext,
|
||||
paddle::platform::complex128>);
|
@ -0,0 +1,90 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
#include "paddle/fluid/operators/math/complex_functors.h"
|
||||
#include "paddle/fluid/platform/for_range.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class AbsKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
const Tensor* x = context.Input<Tensor>("X");
|
||||
Tensor* out = context.Output<Tensor>("Out");
|
||||
|
||||
auto numel = x->numel();
|
||||
auto* x_data = x->data<T>();
|
||||
auto* out_data = out->mutable_data<math::Real<T>>(
|
||||
context.GetPlace(), size_t(x->numel() * sizeof(math::Real<T>)));
|
||||
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
|
||||
math::AbsFunctor<T> functor(x_data, out_data, numel);
|
||||
for_range(functor);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class AbsGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
const framework::Tensor* d_out =
|
||||
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
const framework::Tensor* x = ctx.Input<framework::Tensor>("X");
|
||||
framework::Tensor* d_x =
|
||||
ctx.Output<framework::Tensor>(framework::GradVarName("X"));
|
||||
|
||||
auto numel = d_out->numel();
|
||||
auto* dout_data = d_out->data<math::Real<T>>();
|
||||
auto* x_data = x->data<T>();
|
||||
auto* dx_data = d_x->mutable_data<T>(
|
||||
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(T)));
|
||||
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
|
||||
math::AbsGradFunctor<T> functor(dout_data, x_data, dx_data, numel);
|
||||
for_range(functor);
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class AbsDoubleGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
const framework::Tensor* ddx = ctx.Input<framework::Tensor>("DDX");
|
||||
const framework::Tensor* x = ctx.Input<framework::Tensor>("X");
|
||||
framework::Tensor* ddout = ctx.Output<framework::Tensor>("DDOut");
|
||||
|
||||
auto numel = ddx->numel();
|
||||
auto* ddx_data = ddx->data<T>();
|
||||
auto* x_data = x->data<T>();
|
||||
auto* ddout_data = ddout->mutable_data<T>(
|
||||
ctx.GetPlace(), static_cast<size_t>(numel * sizeof(T)));
|
||||
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
platform::ForRange<DeviceContext> for_range(dev_ctx, numel);
|
||||
math::AbsGradGradFunctor<T> functor(ddx_data, x_data, ddout_data, numel);
|
||||
for_range(functor);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,89 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function, division
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
class TestComplexAbsOp(OpTest):
|
||||
def setUp(self):
|
||||
paddle.enable_static()
|
||||
self.op_type = "abs"
|
||||
self.dtype = np.float64
|
||||
self.shape = (2, 3, 4, 5)
|
||||
self.init_input_output()
|
||||
self.init_grad_input_output()
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
|
||||
self.outputs = {'Out': self.out}
|
||||
|
||||
def init_input_output(self):
|
||||
self.x = np.random.random(self.shape).astype(
|
||||
self.dtype) + 1J * np.random.random(self.shape).astype(self.dtype)
|
||||
self.out = np.abs(self.x)
|
||||
|
||||
def init_grad_input_output(self):
|
||||
self.grad_out = np.ones(self.shape, self.dtype)
|
||||
self.grad_x = self.grad_out * (self.x / np.abs(self.x))
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(
|
||||
['X'],
|
||||
'Out',
|
||||
user_defined_grads=[self.grad_x],
|
||||
user_defined_grad_outputs=[self.grad_out])
|
||||
|
||||
|
||||
class TestComplexAbsOpZeroValues(OpTest):
|
||||
def setUp(self):
|
||||
paddle.enable_static()
|
||||
self.op_type = "abs"
|
||||
self.dtype = np.float64
|
||||
self.shape = (2, 3, 4, 5)
|
||||
self.init_input_output()
|
||||
self.init_grad_input_output()
|
||||
|
||||
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(self.x)}
|
||||
self.outputs = {'Out': self.out}
|
||||
|
||||
def init_input_output(self):
|
||||
self.x = np.zeros(self.shape).astype(self.dtype) + 1J * np.zeros(
|
||||
self.shape).astype(self.dtype)
|
||||
self.out = np.abs(self.x)
|
||||
|
||||
def init_grad_input_output(self):
|
||||
self.grad_out = np.ones(self.shape, self.dtype)
|
||||
self.grad_x = np.zeros(self.shape, self.dtype)
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad(
|
||||
['X'],
|
||||
'Out',
|
||||
user_defined_grads=[self.grad_x],
|
||||
user_defined_grad_outputs=[self.grad_out])
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue