|
|
|
@ -110,15 +110,16 @@ class ParameterAttribute(object):
|
|
|
|
|
momentum=None,
|
|
|
|
|
gradient_clipping_threshold=None,
|
|
|
|
|
sparse_update=False):
|
|
|
|
|
# initialize strategy.
|
|
|
|
|
self.attr = {}
|
|
|
|
|
|
|
|
|
|
if is_static:
|
|
|
|
|
self.attr = {'is_static': True}
|
|
|
|
|
elif initial_std is None and initial_mean is None and initial_max \
|
|
|
|
|
self.attr['is_static'] = True
|
|
|
|
|
|
|
|
|
|
if initial_std is None and initial_mean is None and initial_max \
|
|
|
|
|
is None and initial_min is None:
|
|
|
|
|
self.attr = {'initial_smart': True}
|
|
|
|
|
self.attr['initial_smart'] = True
|
|
|
|
|
elif is_compatible_with(initial_std, float) or \
|
|
|
|
|
is_compatible_with(initial_mean, float):
|
|
|
|
|
self.attr = dict()
|
|
|
|
|
if initial_std is not None:
|
|
|
|
|
self.attr['initial_std'] = initial_std
|
|
|
|
|
if initial_mean is not None:
|
|
|
|
@ -131,7 +132,6 @@ class ParameterAttribute(object):
|
|
|
|
|
assert initial_min < initial_max
|
|
|
|
|
initial_mean = (initial_max + initial_min) / 2
|
|
|
|
|
initial_std = initial_mean - initial_min
|
|
|
|
|
self.attr = dict()
|
|
|
|
|
self.attr['initial_mean'] = initial_mean
|
|
|
|
|
self.attr['initial_std'] = initial_std
|
|
|
|
|
self.attr['initial_strategy'] = 1 # Uniform Random
|
|
|
|
|