Disable clang-format check on a trick part of our source code

avx_docs
Yi Wang 8 years ago
commit 35ccf9c21d

@ -169,5 +169,4 @@ add_subdirectory(paddle)
add_subdirectory(python)
if(WITH_DOC)
add_subdirectory(doc)
add_subdirectory(doc_cn)
endif()

@ -206,5 +206,5 @@ function(create_resources res_file output)
# Convert hex data for C compatibility
string(REGEX REPLACE "([0-9a-f][0-9a-f])" "0x\\1," filedata ${filedata})
# Append data to output file
file(APPEND ${output} "const unsigned char ${filename}[] = {${filedata}};\nconst unsigned ${filename}_size = sizeof(${filename});\n")
file(APPEND ${output} "const unsigned char ${filename}[] = {${filedata}0};\nconst unsigned ${filename}_size = sizeof(${filename});\n")
endfunction()

@ -7,25 +7,50 @@ if(NOT DEFINED SPHINX_THEME_DIR)
endif()
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR "${CMAKE_CURRENT_BINARY_DIR}/_build")
set(BINARY_BUILD_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR "${CMAKE_CURRENT_BINARY_DIR}/_doctrees")
set(SPHINX_CACHE_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR "${CMAKE_CURRENT_BINARY_DIR}/html")
# HTML output director
set(SPHINX_HTML_DIR_EN "${CMAKE_CURRENT_BINARY_DIR}/en/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.in"
"${BINARY_BUILD_DIR}/conf.py"
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.en.in"
"${BINARY_BUILD_DIR_EN}/conf.py"
@ONLY)
sphinx_add_target(paddle_docs
html
${BINARY_BUILD_DIR}
${SPHINX_CACHE_DIR}
${BINARY_BUILD_DIR_EN}
${SPHINX_CACHE_DIR_EN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR})
${SPHINX_HTML_DIR_EN})
add_dependencies(paddle_docs
gen_proto_py)
# configured documentation tools and intermediate build results
set(BINARY_BUILD_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_build")
# Sphinx cache with pickled ReST documents
set(SPHINX_CACHE_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/_doctrees")
# HTML output directory
set(SPHINX_HTML_DIR_CN "${CMAKE_CURRENT_BINARY_DIR}/cn/html")
configure_file(
"${CMAKE_CURRENT_SOURCE_DIR}/conf.py.cn.in"
"${BINARY_BUILD_DIR_CN}/conf.py"
@ONLY)
sphinx_add_target(paddle_docs_cn
html
${BINARY_BUILD_DIR_CN}
${SPHINX_CACHE_DIR_CN}
${CMAKE_CURRENT_SOURCE_DIR}
${SPHINX_HTML_DIR_CN})
add_dependencies(paddle_docs_cn
gen_proto_py)

@ -15,23 +15,23 @@ MNIST的使用场景
MNIST是一个包含有70,000张灰度图片的数字分类数据集。样例数据 ``mnist_train.txt`` 如下:
.. literalinclude:: mnist_train.txt
.. literalinclude:: src/mnist_train.txt
其中每行数据代表一张图片,行内使用 ``;`` 分成两部分。第一部分是图片的标签为0-9中的一个数字第二部分是28*28的图片像素灰度值。 对应的 ``train.list`` 即为这个数据文件的名字:
.. literalinclude:: train.list
.. literalinclude:: src/train.list
dataprovider的使用
++++++++++++++++++
.. literalinclude:: mnist_provider.dict.py
.. literalinclude:: src/mnist_provider.dict.py
- 首先引入PaddlePaddle的PyDataProvider2包。
- 其次定义一个Python的 `Decorator <http://www.learnpython.org/en/Decorators>`_ `@provider`_ 。用于将下一行的数据输入函数标记成一个PyDataProvider2同时设置它的input_types属性。
- `input_types`_设置这个PyDataProvider2返回什么样的数据。本例根据网络配置中 ``data_layer`` 的名字显式指定返回的是一个28*28维的稠密浮点数向量和一个[0-9]的10维整数标签。
.. literalinclude:: mnist_config.py
.. literalinclude:: src/mnist_config.py
:lines: 9-10
- 注意如果用户不显示指定返回数据的对应关系那么PaddlePaddle会根据layer的声明顺序来确定对应关系。但这个关系可能不正确所以推荐使用显式指定的方式来设置input_types。
@ -53,7 +53,7 @@ dataprovider的使用
在网络配置里只需要一行代码就可以调用这个PyDataProvider2
.. literalinclude:: mnist_config.py
.. literalinclude:: src/mnist_config.py
:lines: 1-7
训练数据是 ``train.list`` 没有测试数据调用的PyDataProvider2是 ``mnist_provider`` 模块中的 ``process`` 函数。
@ -80,7 +80,7 @@ dataprovider的使用
本例采用英文情感分类的数据,即将一段英文文本数据,分类成正面情绪和负面情绪两类(用0和1表示)。样例数据 ``sentimental_train.txt`` 如下:
.. literalinclude:: sentimental_train.txt
.. literalinclude:: src/sentimental_train.txt
dataprovider的使用
++++++++++++++++++
@ -90,7 +90,7 @@ dataprovider的使用
- 其中 ``input_types`` 和在 `@provider`_ 中配置的效果一致。本例中的输入特征是词ID的序列因此使用 ``integer_value_sequence`` 类型来设置。
- 将 ``dictionary`` 存入settings对象``process`` 函数中使用。 dictionary是从网络配置中传入的dict对象即一个将单词字符串映射到单词ID的字典。
.. literalinclude:: sentimental_provider.py
.. literalinclude:: src/sentimental_provider.py
网络配置中的调用
++++++++++++++++
@ -100,7 +100,7 @@ dataprovider的使用
* 在配置中需要读取外部字典。
* 在声明DataProvider的时候传入dictionary作为参数。
.. literalinclude:: sentimental_config.py
.. literalinclude:: src/sentimental_config.py
:emphasize-lines: 12-14
参考(Reference)

@ -24,18 +24,18 @@ of 28 x 28 pixels.
A small part of the original data as an example is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_train.txt
.. literalinclude:: src/mnist_train.txt
Each line of the data contains two parts, separated by :code:`;`. The first part is
label of an image. The second part contains 28x28 pixel float values.
Just write path of the above data into train.list. It looks like this:
.. literalinclude:: ../../../doc_cn/ui/data_provider/train.list
.. literalinclude:: src/train.list
The corresponding dataprovider is shown as below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.py
.. literalinclude:: src/mnist_provider.dict.py
The first line imports PyDataProvider2 package.
The main function is the process function, that has two parameters.
@ -74,7 +74,7 @@ sample by using keywords :code:`yield`.
Only a few lines of codes need to be added into the training configuration file,
you can take this as an example.
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_config.py
.. literalinclude:: src/mnist_config.py
Here we specify training data by :code:`train.list`, and no testing data is specified.
The method which actually provide data is :code:`process`.
@ -83,7 +83,7 @@ User also can use another style to provide data, which defines the
:code:`data_layer`'s name explicitly when `yield`. For example,
the :code:`dataprovider` is shown as below.
.. literalinclude:: ../../../doc_cn/ui/data_provider/mnist_provider.dict.py
.. literalinclude:: src/mnist_provider.dict.py
:linenos:
If user did't give the :code:`data_layer`'s name, PaddlePaddle will use
@ -121,11 +121,11 @@ negative sentiment (marked by 0 and 1 respectively).
A small part of the original data as an example can be found in the path below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_train.txt
.. literalinclude:: src/sentimental_train.txt
The corresponding data provider can be found in the path below:
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_provider.py
.. literalinclude:: src/sentimental_provider.py
This data provider for sequential model is a little more complex than that
for MINST dataset.
@ -143,7 +143,7 @@ initialized. The :code:`on_init` function has the following parameters:
To pass these parameters into DataProvider, the following lines should be added
into trainer configuration file.
.. literalinclude:: ../../../doc_cn/ui/data_provider/sentimental_config.py
.. literalinclude:: src/sentimental_config.py
The definition is basically same as MNIST example, except:
* Load dictionary in this configuration

@ -0,0 +1,37 @@
API
===
DataProvider API
----------------
.. toctree::
:maxdepth: 1
data_provider/dataprovider_cn.rst
data_provider/pydataprovider2_cn.rst
.. _api_trainer_config:
Model Config API
----------------
.. toctree::
:maxdepth: 1
trainer_config_helpers/optimizers.rst
trainer_config_helpers/data_sources.rst
trainer_config_helpers/layers.rst
trainer_config_helpers/activations.rst
trainer_config_helpers/poolings.rst
trainer_config_helpers/networks.rst
trainer_config_helpers/evaluators.rst
trainer_config_helpers/attrs.rst
Applications API
----------------
.. toctree::
:maxdepth: 1
predict/swig_py_paddle_cn.rst

@ -7,7 +7,7 @@ DataProvider API
.. toctree::
:maxdepth: 1
data_provider/index_en.rst
data_provider/dataprovider_en.rst
data_provider/pydataprovider2_en.rst
.. _api_trainer_config:

@ -34,7 +34,7 @@ PaddlePaddle使用swig对常用的预测接口进行了封装通过编译会
如下是一段使用mnist model来实现手写识别的预测代码。完整的代码见 ``src_root/doc/ui/predict/predict_sample.py`` 。mnist model可以通过 ``src_root\demo\mnist`` 目录下的demo训练出来。
.. literalinclude:: ../../../doc/ui/predict/predict_sample.py
.. literalinclude:: src/predict_sample.py
:language: python
:lines: 15-18,121-136

@ -13,7 +13,7 @@ Here is a sample python script that shows the typical prediction process for the
MNIST classification problem. A complete sample code could be found at
:code:`src_root/doc/ui/predict/predict_sample.py`.
.. literalinclude:: ./predict_sample.py
.. literalinclude:: src/predict_sample.py
:language: python
:lines: 15-18,90-100,101-104

@ -62,7 +62,7 @@ source_suffix = ['.rst', '.md', '.Rmd']
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index'
master_doc = 'index_cn'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.

@ -63,7 +63,7 @@ source_suffix = ['.rst', '.md', '.Rmd']
source_encoding = 'utf-8'
# The master toctree document.
master_doc = 'index'
master_doc = 'index_en'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.

@ -1,5 +1,5 @@
####################
PaddlePaddle常见问题
FAQ
####################
.. contents::
@ -33,10 +33,9 @@ PyDataProvider使用的是异步加载同时在内存里直接随即选取数
个内存池实际上决定了shuffle的粒度。所以如果将这个内存池减小又要保证数据是随机的
那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
.. literalinclude:: reduce_min_pool_size.py
.. literalinclude:: src/reduce_min_pool_size.py
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 `这里
<../ui/data_provider/pydataprovider2.html#provider>`_ 。
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 `这里 <../ui/data_provider/pydataprovider2.html#provider>`_
神经元激活内存
++++++++++++++
@ -76,7 +75,7 @@ PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需
使用 :code:`pydataprovider`时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
.. literalinclude:: reduce_min_pool_size.py
.. literalinclude:: src/reduce_min_pool_size.py
同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
@ -90,11 +89,11 @@ PaddlePaddle支持Sparse的训练sparse训练需要训练特征是 :code:`spa
使用一个词前两个词和后两个词来预测这个中间的词。这个任务的DataProvider为\:
.. literalinclude:: word2vec_dataprovider.py
.. literalinclude:: src/word2vec_dataprovider.py
这个任务的配置为\:
.. literalinclude:: word2vec_config.py
.. literalinclude:: src/word2vec_config.py
更多关于sparse训练的内容请参考 `sparse训练的文档 <TBD>`_
@ -158,7 +157,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID相同名字
这里 :code:`hidden_a`:code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`
7. *-cp27mu-linux_x86_64.whl is not a supported wheel on this platform.
-----------------------------------------------------------------------
---------------------------------------------------------------------------
出现这个问题的主要原因是系统编译wheel包的时候使用的 :code:`wheel` 包是最新的,
而系统中的 :code:`pip` 包比较老。具体的解决方法是,更新 :code:`pip` 包并重新编译PaddlePaddle。
@ -220,7 +219,7 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID相同名字
10. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致
----------------------------------------------------------
----------------------------------------------------------------
这是目前CMake寻找Python的逻辑存在缺陷如果系统安装了多个Python版本CMake找到的Python库和Python解释器版本可能有不一致现象导致编译PaddlePaddle失败。正确的解决方法是
用户强制指定特定的Python版本具体操作如下

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save