|
|
|
@ -22,39 +22,33 @@ import numpy as np
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from paddle.fluid.dygraph.jit import dygraph_to_static_func
|
|
|
|
|
from paddle.fluid.dygraph import declarative, ProgramTranslator
|
|
|
|
|
from paddle.fluid.dygraph.nn import BatchNorm, Conv2D, Linear, Pool2D
|
|
|
|
|
from paddle.fluid.dygraph.io import VARIABLE_FILENAME
|
|
|
|
|
|
|
|
|
|
SEED = 2020
|
|
|
|
|
IMAGENET1000 = 1281167
|
|
|
|
|
base_lr = 0.1
|
|
|
|
|
base_lr = 0.001
|
|
|
|
|
momentum_rate = 0.9
|
|
|
|
|
l2_decay = 1e-4
|
|
|
|
|
batch_size = 8
|
|
|
|
|
epoch_num = 1
|
|
|
|
|
place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() \
|
|
|
|
|
else fluid.CPUPlace()
|
|
|
|
|
MODEL_SAVE_PATH = "./resnet.inference.model"
|
|
|
|
|
DY_STATE_DICT_SAVE_PATH = "./resnet.dygraph"
|
|
|
|
|
program_translator = ProgramTranslator()
|
|
|
|
|
|
|
|
|
|
if fluid.is_compiled_with_cuda():
|
|
|
|
|
fluid.set_flags({'FLAGS_cudnn_deterministic': True})
|
|
|
|
|
|
|
|
|
|
def optimizer_setting(parameter_list=None):
|
|
|
|
|
total_images = IMAGENET1000
|
|
|
|
|
step = int(math.ceil(float(total_images) / batch_size))
|
|
|
|
|
epochs = [30, 60, 90]
|
|
|
|
|
bd = [step * e for e in epochs]
|
|
|
|
|
|
|
|
|
|
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
|
|
|
|
if fluid.in_dygraph_mode():
|
|
|
|
|
def optimizer_setting(parameter_list=None):
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(
|
|
|
|
|
learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
|
boundaries=bd, values=lr),
|
|
|
|
|
learning_rate=base_lr,
|
|
|
|
|
momentum=momentum_rate,
|
|
|
|
|
regularization=fluid.regularizer.L2Decay(l2_decay),
|
|
|
|
|
parameter_list=parameter_list)
|
|
|
|
|
else:
|
|
|
|
|
optimizer = fluid.optimizer.Momentum(
|
|
|
|
|
learning_rate=fluid.layers.piecewise_decay(
|
|
|
|
|
boundaries=bd, values=lr),
|
|
|
|
|
momentum=momentum_rate,
|
|
|
|
|
regularization=fluid.regularizer.L2Decay(l2_decay))
|
|
|
|
|
|
|
|
|
|
return optimizer
|
|
|
|
|
|
|
|
|
@ -189,8 +183,8 @@ class ResNet(fluid.dygraph.Layer):
|
|
|
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
|
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)))
|
|
|
|
|
|
|
|
|
|
@dygraph_to_static_func
|
|
|
|
|
def forward(self, inputs, label):
|
|
|
|
|
@declarative
|
|
|
|
|
def forward(self, inputs):
|
|
|
|
|
y = self.conv(inputs)
|
|
|
|
|
y = self.pool2d_max(y)
|
|
|
|
|
for bottleneck_block in self.bottleneck_block_list:
|
|
|
|
@ -199,37 +193,38 @@ class ResNet(fluid.dygraph.Layer):
|
|
|
|
|
y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_output])
|
|
|
|
|
pred = self.out(y)
|
|
|
|
|
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=pred, label=label)
|
|
|
|
|
avg_loss_ = fluid.layers.mean(x=loss)
|
|
|
|
|
acc_top1_ = fluid.layers.accuracy(input=pred, label=label, k=1)
|
|
|
|
|
acc_top5_ = fluid.layers.accuracy(input=pred, label=label, k=5)
|
|
|
|
|
return pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def reader_decorator(reader):
|
|
|
|
|
def __reader__():
|
|
|
|
|
for item in reader():
|
|
|
|
|
img = np.array(item[0]).astype('float32').reshape(3, 224, 224)
|
|
|
|
|
label = np.array(item[1]).astype('int64').reshape(1)
|
|
|
|
|
yield img, label
|
|
|
|
|
|
|
|
|
|
return pred, avg_loss_, acc_top1_, acc_top5_
|
|
|
|
|
return __reader__
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_resnet_in_static_mode():
|
|
|
|
|
def train(to_static):
|
|
|
|
|
"""
|
|
|
|
|
Tests model decorated by `dygraph_to_static_output` in static mode. For users, the model is defined in dygraph mode and trained in static mode.
|
|
|
|
|
"""
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
np.random.seed(SEED)
|
|
|
|
|
fluid.default_startup_program().random_seed = SEED
|
|
|
|
|
fluid.default_main_program().random_seed = SEED
|
|
|
|
|
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
main_prog = fluid.Program()
|
|
|
|
|
|
|
|
|
|
with fluid.program_guard(main_prog, startup_prog):
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
reader_decorator(paddle.dataset.flowers.train(use_xmap=False)),
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
drop_last=True)
|
|
|
|
|
data_loader = fluid.io.DataLoader.from_generator(
|
|
|
|
|
capacity=5, iterable=True)
|
|
|
|
|
data_loader.set_sample_list_generator(train_reader)
|
|
|
|
|
|
|
|
|
|
img = fluid.data(name="img", shape=[None, 3, 224, 224], dtype="float32")
|
|
|
|
|
label = fluid.data(name="label", shape=[None, 1], dtype="int64")
|
|
|
|
|
label.stop_gradient = True
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
pred, avg_loss_, acc_top1_, acc_top5_ = resnet(img, label)
|
|
|
|
|
optimizer = optimizer_setting(parameter_list=resnet.parameters())
|
|
|
|
|
optimizer.minimize(avg_loss_)
|
|
|
|
|
|
|
|
|
|
exe.run(startup_prog)
|
|
|
|
|
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.dataset.flowers.train(use_xmap=False), batch_size=batch_size)
|
|
|
|
|
|
|
|
|
|
for epoch in range(epoch_num):
|
|
|
|
|
total_loss = 0.0
|
|
|
|
@ -237,21 +232,19 @@ def train_resnet_in_static_mode():
|
|
|
|
|
total_acc5 = 0.0
|
|
|
|
|
total_sample = 0
|
|
|
|
|
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
for batch_id, data in enumerate(data_loader()):
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
dy_x_data = np.array(
|
|
|
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
|
|
|
if len(np.array([x[1]
|
|
|
|
|
for x in data]).astype('int64')) != batch_size:
|
|
|
|
|
continue
|
|
|
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(-1,
|
|
|
|
|
1)
|
|
|
|
|
|
|
|
|
|
avg_loss, acc_top1, acc_top5 = exe.run(
|
|
|
|
|
main_prog,
|
|
|
|
|
feed={"img": dy_x_data,
|
|
|
|
|
"label": y_data},
|
|
|
|
|
fetch_list=[avg_loss_, acc_top1_, acc_top5_])
|
|
|
|
|
img, label = data
|
|
|
|
|
|
|
|
|
|
pred = resnet(img)
|
|
|
|
|
loss = fluid.layers.cross_entropy(input=pred, label=label)
|
|
|
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
|
acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
|
|
|
|
|
acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
|
|
|
|
|
|
|
|
|
|
avg_loss.backward()
|
|
|
|
|
optimizer.minimize(avg_loss)
|
|
|
|
|
resnet.clear_gradients()
|
|
|
|
|
|
|
|
|
|
total_loss += avg_loss
|
|
|
|
|
total_acc1 += acc_top1
|
|
|
|
@ -261,15 +254,83 @@ def train_resnet_in_static_mode():
|
|
|
|
|
end_time = time.time()
|
|
|
|
|
if batch_id % 2 == 0:
|
|
|
|
|
print( "epoch %d | batch step %d, loss %0.3f, acc1 %0.3f, acc5 %0.3f, time %f" % \
|
|
|
|
|
( epoch, batch_id, total_loss / total_sample, \
|
|
|
|
|
total_acc1 / total_sample, total_acc5 / total_sample, end_time-start_time))
|
|
|
|
|
( epoch, batch_id, total_loss.numpy() / total_sample, \
|
|
|
|
|
total_acc1.numpy() / total_sample, total_acc5.numpy() / total_sample, end_time-start_time))
|
|
|
|
|
if batch_id == 10:
|
|
|
|
|
if to_static:
|
|
|
|
|
fluid.dygraph.jit.save(resnet, MODEL_SAVE_PATH)
|
|
|
|
|
else:
|
|
|
|
|
fluid.dygraph.save_dygraph(resnet.state_dict(),
|
|
|
|
|
DY_STATE_DICT_SAVE_PATH)
|
|
|
|
|
# avoid dataloader throw abort signaal
|
|
|
|
|
data_loader._reset()
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
return total_loss.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_dygraph(data):
|
|
|
|
|
program_translator.enable(False)
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
resnet = ResNet()
|
|
|
|
|
|
|
|
|
|
model_dict, _ = fluid.dygraph.load_dygraph(DY_STATE_DICT_SAVE_PATH)
|
|
|
|
|
resnet.set_dict(model_dict)
|
|
|
|
|
resnet.eval()
|
|
|
|
|
|
|
|
|
|
pred_res = resnet(fluid.dygraph.to_variable(data))
|
|
|
|
|
|
|
|
|
|
return pred_res.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_static(data):
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(
|
|
|
|
|
MODEL_SAVE_PATH, executor=exe, params_filename=VARIABLE_FILENAME)
|
|
|
|
|
|
|
|
|
|
pred_res = exe.run(inference_program,
|
|
|
|
|
feed={feed_target_names[0]: data},
|
|
|
|
|
fetch_list=fetch_targets)
|
|
|
|
|
|
|
|
|
|
return pred_res[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def predict_dygraph_jit(data):
|
|
|
|
|
with fluid.dygraph.guard(place):
|
|
|
|
|
resnet = fluid.dygraph.jit.load(MODEL_SAVE_PATH)
|
|
|
|
|
resnet.eval()
|
|
|
|
|
|
|
|
|
|
pred_res = resnet(data)
|
|
|
|
|
|
|
|
|
|
return pred_res.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestResnet(unittest.TestCase):
|
|
|
|
|
def test_in_static_mode(self):
|
|
|
|
|
train_resnet_in_static_mode()
|
|
|
|
|
def train(self, to_static):
|
|
|
|
|
program_translator.enable(to_static)
|
|
|
|
|
return train(to_static)
|
|
|
|
|
|
|
|
|
|
def verify_predict(self):
|
|
|
|
|
image = np.random.random([1, 3, 224, 224]).astype('float32')
|
|
|
|
|
dy_pre = predict_dygraph(image)
|
|
|
|
|
st_pre = predict_static(image)
|
|
|
|
|
dy_jit_pre = predict_dygraph_jit(image)
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(dy_pre, st_pre),
|
|
|
|
|
msg="dy_pre:\n {}\n, st_pre: \n{}.".format(dy_pre, st_pre))
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(dy_jit_pre, st_pre),
|
|
|
|
|
msg="dy_jit_pre:\n {}\n, st_pre: \n{}.".format(dy_jit_pre, st_pre))
|
|
|
|
|
|
|
|
|
|
def test_resnet(self):
|
|
|
|
|
static_loss = self.train(to_static=True)
|
|
|
|
|
dygraph_loss = self.train(to_static=False)
|
|
|
|
|
self.assertTrue(
|
|
|
|
|
np.allclose(static_loss, dygraph_loss),
|
|
|
|
|
msg="static_loss: {} \n dygraph_loss: {}".format(static_loss,
|
|
|
|
|
dygraph_loss))
|
|
|
|
|
self.verify_predict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|