|
|
|
@ -78,7 +78,7 @@ def conv_net(img, label):
|
|
|
|
|
return loss_net(conv_pool_2, label)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(nn_type, use_cuda, parallel, save_dirname):
|
|
|
|
|
def train(nn_type, use_cuda, parallel, save_dirname, save_param_filename):
|
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
|
return
|
|
|
|
|
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
|
|
|
|
@ -143,8 +143,10 @@ def train(nn_type, use_cuda, parallel, save_dirname):
|
|
|
|
|
avg_loss_val = numpy.array(avg_loss_set).mean()
|
|
|
|
|
if float(acc_val) > 0.85: # test acc > 85%
|
|
|
|
|
if save_dirname is not None:
|
|
|
|
|
fluid.io.save_inference_model(save_dirname, ["img"],
|
|
|
|
|
[prediction], exe)
|
|
|
|
|
fluid.io.save_inference_model(
|
|
|
|
|
save_dirname, ["img"], [prediction],
|
|
|
|
|
exe,
|
|
|
|
|
save_file_name=save_param_filename)
|
|
|
|
|
return
|
|
|
|
|
else:
|
|
|
|
|
print(
|
|
|
|
@ -156,7 +158,7 @@ def train(nn_type, use_cuda, parallel, save_dirname):
|
|
|
|
|
raise AssertionError("Loss of recognize digits is too large")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def infer(use_cuda, save_dirname=None):
|
|
|
|
|
def infer(use_cuda, save_dirname=None, param_filename=None):
|
|
|
|
|
if save_dirname is None:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
@ -167,8 +169,8 @@ def infer(use_cuda, save_dirname=None):
|
|
|
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
|
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
|
|
|
# we want to obtain data from using fetch operators).
|
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
|
[inference_program, feed_target_names, fetch_targets
|
|
|
|
|
] = fluid.io.load_inference_model(save_dirname, exe, param_filename)
|
|
|
|
|
|
|
|
|
|
# The input's dimension of conv should be 4-D or 5-D.
|
|
|
|
|
# Use normilized image pixels as input data, which should be in the range [-1.0, 1.0].
|
|
|
|
@ -183,36 +185,45 @@ def infer(use_cuda, save_dirname=None):
|
|
|
|
|
print("infer results: ", results[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(use_cuda, parallel, nn_type):
|
|
|
|
|
def main(use_cuda, parallel, nn_type, combine):
|
|
|
|
|
if not use_cuda and not parallel:
|
|
|
|
|
save_dirname = "recognize_digits_" + nn_type + ".inference.model"
|
|
|
|
|
save_filename = None
|
|
|
|
|
if combine == True:
|
|
|
|
|
save_filename = "__params_combined__"
|
|
|
|
|
else:
|
|
|
|
|
save_dirname = None
|
|
|
|
|
save_filename = None
|
|
|
|
|
|
|
|
|
|
train(
|
|
|
|
|
nn_type=nn_type,
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
parallel=parallel,
|
|
|
|
|
save_dirname=save_dirname)
|
|
|
|
|
infer(use_cuda=use_cuda, save_dirname=save_dirname)
|
|
|
|
|
save_dirname=save_dirname,
|
|
|
|
|
save_param_filename=save_filename)
|
|
|
|
|
infer(
|
|
|
|
|
use_cuda=use_cuda,
|
|
|
|
|
save_dirname=save_dirname,
|
|
|
|
|
param_filename=save_filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestRecognizeDigits(unittest.TestCase):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def inject_test_method(use_cuda, parallel, nn_type):
|
|
|
|
|
def inject_test_method(use_cuda, parallel, nn_type, combine):
|
|
|
|
|
def __impl__(self):
|
|
|
|
|
prog = fluid.Program()
|
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
|
with fluid.program_guard(prog, startup_prog):
|
|
|
|
|
main(use_cuda, parallel, nn_type)
|
|
|
|
|
main(use_cuda, parallel, nn_type, combine)
|
|
|
|
|
|
|
|
|
|
fn = 'test_{0}_{1}_{2}'.format(nn_type, 'cuda'
|
|
|
|
|
fn = 'test_{0}_{1}_{2}_{3}'.format(nn_type, 'cuda'
|
|
|
|
|
if use_cuda else 'cpu', 'parallel'
|
|
|
|
|
if parallel else 'normal')
|
|
|
|
|
if parallel else 'normal', 'combine'
|
|
|
|
|
if combine else 'separate')
|
|
|
|
|
|
|
|
|
|
setattr(TestRecognizeDigits, fn, __impl__)
|
|
|
|
|
|
|
|
|
@ -221,7 +232,10 @@ def inject_all_tests():
|
|
|
|
|
for use_cuda in (False, True):
|
|
|
|
|
for parallel in (False, True):
|
|
|
|
|
for nn_type in ('mlp', 'conv'):
|
|
|
|
|
inject_test_method(use_cuda, parallel, nn_type)
|
|
|
|
|
inject_test_method(use_cuda, parallel, nn_type, True)
|
|
|
|
|
|
|
|
|
|
# One unit-test for saving parameters as separate files
|
|
|
|
|
inject_test_method(False, False, 'mlp', False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
inject_all_tests()
|
|
|
|
|