| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -67,6 +67,7 @@ paddle.v2.parameters.create, no longer exposed to users.
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					"""
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import collections
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import inspect
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import paddle.trainer_config_helpers as conf_helps
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.config_parser_utils import \
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -74,26 +75,14 @@ from paddle.trainer_config_helpers.config_parser_utils import \
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.default_decorators import wrap_name_default
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.default_decorators import wrap_act_default
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.default_decorators import \
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    wrap_bias_attr_default
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					from paddle.trainer_config_helpers.layers import layer_support
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import data_type
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import activation
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					import attr
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					__all__ = [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'pad', 'classification_cost', 'cross_entropy_cost',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'cross_entropy_with_selfnorm_cost', 'regression_cost',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    'hsigmoid', 'eos'
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					__all__ = ['parse_network', 'data']
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					__projection_names__ = filter(lambda x: x.endswith('_projection'),
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					                              dir(conf_helps))
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -288,83 +277,51 @@ data = DataLayerV2
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					AggregateLevel = conf_helps.layers.AggregateLevel
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					ExpandLevel = conf_helps.layers.ExpandLevel
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					layer_list = [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # [V2LayerImpl, V1_method_name, parent_names]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # fully connected layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['fc', 'fc_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # conv layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['conv_shift', 'conv_shift_layer', ['a', 'b']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['img_conv', 'img_conv_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # image pooling layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['img_pool', 'img_pool_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['spp', 'spp_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['maxout', 'maxout_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # norm layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['batch_norm', 'batch_norm_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # recurrent layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['recurrent', 'recurrent_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['lstmemory', 'lstmemory', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['grumemory', 'grumemory', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # aggregate layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['pool', 'pooling_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['last_seq', 'last_seq', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['first_seq', 'first_seq', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['concat', 'concat_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['seq_concat', 'seq_concat_layer', ['a', 'b']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # reshaping layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['block_expand', 'block_expand_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['expand', 'expand_layer', ['input', 'expand_as']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['repeat', 'repeat_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['rotate', 'rotate_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['seq_reshape', 'seq_reshape_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # math layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['addto', 'addto_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['interpolation', 'interpolation_layer', ['input', 'weight']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['bilinear_interp', 'bilinear_interp_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['power', 'power_layer', ['input', 'weight']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['scaling', 'scaling_layer', ['input', 'weight']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['slope_intercept', 'slope_intercept_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['tensor', 'tensor_layer', ['a', 'b']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['cos_sim', 'cos_sim', ['a', 'b']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['trans', 'trans_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # sampling layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['max_id', 'maxid_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['sampling_id', 'sampling_id_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # slicing and joining layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['pad', 'pad_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # cost layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        'classification_cost', 'classification_cost',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        ['input', 'label', 'weight']
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        ['input', 'label']
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        'multi_binary_label_cross_entropy_cost',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        'multi_binary_label_cross_entropy', ['input', 'label']
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['lambda_cost', 'lambda_cost', ['input', 'score']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['sum_cost', 'sum_cost', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['huber_cost', 'huber_cost', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['crf', 'crf_layer', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['crf_decoding', 'crf_decoding_layer', ['input']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['ctc', 'ctc_layer', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['nce', 'nce_layer', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['hsigmoid', 'hsigmoid', ['input', 'label']],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    # check layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ['eos', 'eos_layer', ['input']]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					for l in layer_list:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    globals()[l[0]] = __convert_to_v2__(l[1], l[2])
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def __layer_name_mapping__(inname):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    if inname in ['data_layer', 'memory', 'mixed_layer']:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        # Do Not handle these layers
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    elif inname == 'maxid_layer':
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return 'max_id'
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    elif inname.endswith('memory') or inname.endswith(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return inname
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    elif inname in [
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            'cross_entropy', 'multi_binary_label_cross_entropy',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					            'cross_entropy_with_selfnorm'
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    ]:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return inname + "_cost"
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    elif inname.endswith('_cost'):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return inname
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    elif inname.endswith("_layer"):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        return inname[:-len("_layer")]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def __layer_name_mapping_parent_names__(inname):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    all_args = getattr(conf_helps, inname).argspec.args
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    return filter(
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        lambda x: x in ['input1', 'input2','label', 'input', 'a', 'b', 'expand_as',
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					                        'weights', 'vectors', 'weight', 'score', 'left', 'right'],
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        all_args)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					def __convert_layer__(_new_name_, _old_name_, _parent_names_):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    global __all__
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    __all__.append(_new_name_)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    globals()[new_name] = __convert_to_v2__(_old_name_, _parent_names_)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					for each_layer_name in dir(conf_helps):
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    new_name = __layer_name_mapping__(each_layer_name)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    if new_name is not None:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        parent_names = __layer_name_mapping_parent_names__(each_layer_name)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        assert len(parent_names) != 0, each_layer_name
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					        __convert_layer__(new_name, each_layer_name, parent_names)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					del parent_names
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					del new_name
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					del each_layer_name
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					# convert projection
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					for prj in __projection_names__:
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
 
 |