Merge pull request #7538 from JiayiFeng/dev_elementwise_max_min
elementwise max minadd_depthwiseConv_op_gpu
commit
37a9437073
@ -0,0 +1,45 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/elementwise_max_op.h"
|
||||||
|
#include "paddle/operators/elementwise_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
|
||||||
|
public:
|
||||||
|
ElementwiseMaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||||
|
: ElementwiseOpMaker(proto, op_checker) {
|
||||||
|
SetComment("Max", "Out = max(X, Y)");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(elementwise_max, ops::ElementwiseOp, ops::ElementwiseMaxOpMaker,
|
||||||
|
elementwise_max_grad, ops::ElementwiseOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
elementwise_max,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
elementwise_max_grad,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,32 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/elementwise_max_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_max,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMaxKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_max_grad,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMaxGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t>);
|
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/operators/elementwise_op_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct MaxFunctor {
|
||||||
|
inline HOSTDEVICE T operator()(T a, T b) const { return a > b ? a : b; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMaxKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
ElementwiseComputeEx<MaxFunctor<T>, DeviceContext, T>(ctx);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMaxGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e > y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = (x_e <= y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMaxBroadCastGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
||||||
|
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 2>(pre, n))
|
||||||
|
.sum(Eigen::array<int, 1>{{0}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMaxBroadCast2GradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N, typename Post>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
|
||||||
|
Post post) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
||||||
|
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e > y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e <= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
||||||
|
.sum(Eigen::array<int, 2>{{0, 2}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMaxGradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
ElementwiseGradCompute<DeviceContext, T, ElementwiseMaxGradFunctor<T>,
|
||||||
|
ElementwiseMaxBroadCastGradFunctor<T>,
|
||||||
|
ElementwiseMaxBroadCast2GradFunctor<T>>(ctx);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,45 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/elementwise_min_op.h"
|
||||||
|
#include "paddle/operators/elementwise_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
class ElementwiseMinOpMaker : public ElementwiseOpMaker {
|
||||||
|
public:
|
||||||
|
ElementwiseMinOpMaker(OpProto* proto, OpAttrChecker* op_checker)
|
||||||
|
: ElementwiseOpMaker(proto, op_checker) {
|
||||||
|
SetComment("Max", "Out = min(X, Y)");
|
||||||
|
AddComment(comment_);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(elementwise_min, ops::ElementwiseOp, ops::ElementwiseMinOpMaker,
|
||||||
|
elementwise_min_grad, ops::ElementwiseOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
elementwise_min,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
elementwise_min_grad,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, double>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
|
@ -0,0 +1,32 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/elementwise_min_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_min,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMinKernel<paddle::platform::CUDADeviceContext, int64_t>);
|
||||||
|
REGISTER_OP_CUDA_KERNEL(
|
||||||
|
elementwise_min_grad,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, float>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, double>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext, int>,
|
||||||
|
ops::ElementwiseMinGradKernel<paddle::platform::CUDADeviceContext,
|
||||||
|
int64_t>);
|
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include "paddle/operators/elementwise_op_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct MinFunctor {
|
||||||
|
inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; }
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMinKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
ElementwiseComputeEx<MinFunctor<T>, DeviceContext, T>(ctx);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = (x_e >= y_e).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinBroadCastGradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 2>(1, n))
|
||||||
|
.broadcast(Eigen::DSizes<int, 2>(pre, 1))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 2>(pre, n))
|
||||||
|
.sum(Eigen::array<int, 1>{{0}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
struct ElementwiseMinBroadCast2GradFunctor {
|
||||||
|
template <typename Device, typename X, typename Y, typename Z, typename dX,
|
||||||
|
typename dY, typename dZ, typename Pre, typename N, typename Post>
|
||||||
|
void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n,
|
||||||
|
Post post) {
|
||||||
|
auto x_e = framework::EigenVector<T>::Flatten(*x);
|
||||||
|
auto y_e = framework::EigenVector<T>::Flatten(*y);
|
||||||
|
auto dz_e = framework::EigenVector<T>::Flatten(*dz);
|
||||||
|
|
||||||
|
auto y_e_bcast = y_e.reshape(Eigen::DSizes<int, 3>(1, n, 1))
|
||||||
|
.broadcast(Eigen::DSizes<int, 3>(pre, 1, post))
|
||||||
|
.reshape(Eigen::DSizes<int, 1>(x_e.size()));
|
||||||
|
if (dx) {
|
||||||
|
auto dx_e = framework::EigenVector<T>::Flatten(*dx);
|
||||||
|
dx_e.device(d) = (x_e < y_e_bcast).template cast<T>() * dz_e;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (dy) {
|
||||||
|
auto dy_e = framework::EigenVector<T>::Flatten(*dy);
|
||||||
|
dy_e.device(d) = ((x_e >= y_e_bcast).template cast<T>() * dz_e)
|
||||||
|
.reshape(Eigen::DSizes<int, 3>(pre, n, post))
|
||||||
|
.sum(Eigen::array<int, 2>{{0, 2}});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class ElementwiseMinGradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
ElementwiseGradCompute<DeviceContext, T, ElementwiseMinGradFunctor<T>,
|
||||||
|
ElementwiseMinBroadCastGradFunctor<T>,
|
||||||
|
ElementwiseMinBroadCast2GradFunctor<T>>(ctx);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,120 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
#you may not use this file except in compliance with the License.
|
||||||
|
#You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
#Unless required by applicable law or agreed to in writing, software
|
||||||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
#See the License for the specific language governing permissions and
|
||||||
|
#limitations under the License.
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
# If x and y have the same value, the max() is not differentiable.
|
||||||
|
# So we generate test data by the following method
|
||||||
|
# to avoid them being too close to each other.
|
||||||
|
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
||||||
|
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
|
||||||
|
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad_normal(self):
|
||||||
|
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
|
||||||
|
|
||||||
|
def test_check_grad_ingore_x(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
|
||||||
|
|
||||||
|
def test_check_grad_ingore_y(self):
|
||||||
|
self.check_grad(
|
||||||
|
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
x = np.random.random((32, )).astype("float32")
|
||||||
|
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
|
||||||
|
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
self.outputs = {'Out': np.maximum(self.inputs['X'], self.inputs['Y'])}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
|
||||||
|
y = x[:, 0, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (2, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 0}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
|
||||||
|
y = x[0, :, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (3, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 1}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
|
||||||
|
y = x[0, 0, :] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (4, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_max"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
|
||||||
|
y = x[0, :, :, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 1}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.maximum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
@ -0,0 +1,120 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
#you may not use this file except in compliance with the License.
|
||||||
|
#You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
#Unless required by applicable law or agreed to in writing, software
|
||||||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
#See the License for the specific language governing permissions and
|
||||||
|
#limitations under the License.
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
# If x and y have the same value, the min() is not differentiable.
|
||||||
|
# So we generate test data by the following method
|
||||||
|
# to avoid them being too close to each other.
|
||||||
|
x = np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
||||||
|
sgn = np.random.choice([-1, 1], [13, 17]).astype("float32")
|
||||||
|
y = x + sgn * np.random.uniform(0.1, 1, [13, 17]).astype("float32")
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad_normal(self):
|
||||||
|
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
|
||||||
|
|
||||||
|
def test_check_grad_ingore_x(self):
|
||||||
|
self.check_grad(
|
||||||
|
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
|
||||||
|
|
||||||
|
def test_check_grad_ingore_y(self):
|
||||||
|
self.check_grad(
|
||||||
|
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_Vector(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
x = np.random.random((32, )).astype("float32")
|
||||||
|
sgn = np.random.choice([-1, 1], (32, )).astype("float32")
|
||||||
|
y = x + sgn * np.random.uniform(0.1, 1, (32, )).astype("float32")
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
self.outputs = {'Out': np.minimum(self.inputs['X'], self.inputs['Y'])}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_0(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (2, )).astype(np.float32)
|
||||||
|
y = x[:, 0, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (2, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 0}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(2, 1, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_1(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (3, )).astype(np.float32)
|
||||||
|
y = x[0, :, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (3, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 1}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_2(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (4, )).astype(np.float32)
|
||||||
|
y = x[0, 0, :] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (4, )).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 1, 4))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
class TestElementwiseMaxOp_broadcast_3(TestElementwiseOp):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "elementwise_min"
|
||||||
|
x = np.random.uniform(0.5, 1, (2, 3, 4, 5)).astype(np.float32)
|
||||||
|
sgn = np.random.choice([-1, 1], (3, 4)).astype(np.float32)
|
||||||
|
y = x[0, :, :, 0] + sgn * \
|
||||||
|
np.random.uniform(1, 2, (3, 4)).astype(np.float32)
|
||||||
|
self.inputs = {'X': x, 'Y': y}
|
||||||
|
|
||||||
|
self.attrs = {'axis': 1}
|
||||||
|
self.outputs = {
|
||||||
|
'Out':
|
||||||
|
np.minimum(self.inputs['X'], self.inputs['Y'].reshape(1, 3, 4, 1))
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue