Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into add-communicator

mixed_precision_init
Qiao Longfei 6 years ago
commit 381f383989

@ -25,12 +25,18 @@ message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: " message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
"${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}") "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
if(WIN32) if(WIN32)
set(CMAKE_SUPPRESS_REGENERATION ON)
set(CMAKE_STATIC_LIBRARY_PREFIX lib) set(CMAKE_STATIC_LIBRARY_PREFIX lib)
add_definitions("/DGOOGLE_GLOG_DLL_DECL=") add_definitions("/DGOOGLE_GLOG_DLL_DECL=")
set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd") set(CMAKE_C_FLAGS_DEBUG "${CMAKE_C_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT") set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} /bigobj /MT")
set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd") set(CMAKE_CXX_FLAGS_DEBUG "${CMAKE_CXX_FLAGS_DEBUG} /bigobj /MTd")
set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT") set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} /bigobj /MT")
add_compile_options(/wd4068 /wd4129 /wd4244 /wd4267 /wd4297 /wd4530 /wd4577 /wd4819 /wd4838)
set(PADDLE_LINK_FLAGS "/IGNORE:4006 /IGNORE:4098 /IGNORE:4217 /IGNORE:4221")
set(CMAKE_STATIC_LINKER_FLAGS "${CMAKE_STATIC_LINKER_FLAGS} ${PADDLE_LINK_FLAGS}")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} ${PADDLE_LINK_FLAGS}")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${PADDLE_LINK_FLAGS}")
endif(WIN32) endif(WIN32)
find_package(CUDA QUIET) find_package(CUDA QUIET)
@ -212,7 +218,7 @@ endif()
if (WITH_JEMALLOC) if (WITH_JEMALLOC)
find_package(JeMalloc REQUIRED) find_package(JeMalloc REQUIRED)
include_directories(${JEMALLOC_INCLUDE_DIR}) include_directories(${JEMALLOC_INCLUDE_DIR})
add_definitions(-DWITH_JEMALLOC) add_definitions(-DPADDLE_WITH_JEMALLOC)
endif() endif()
include(generic) # simplify cmake module include(generic) # simplify cmake module

@ -1,5 +1,6 @@
# PaddlePaddle # PaddlePaddle
English | [简体中文](./README_cn.md)
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html) [![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
@ -7,7 +8,6 @@
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
Welcome to the PaddlePaddle GitHub. Welcome to the PaddlePaddle GitHub.
PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use, PaddlePaddle (PArallel Distributed Deep LEarning) is an easy-to-use,
@ -18,16 +18,6 @@ learning to many products at Baidu.
Our vision is to enable deep learning for everyone via PaddlePaddle. Our vision is to enable deep learning for everyone via PaddlePaddle.
Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle. Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddle/releases) to track the latest feature of PaddlePaddle.
欢迎来到 PaddlePaddle GitHub
PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效灵活、可扩展的深度学习平台,最初由百度科学家和工程师共同开发,目的是将深度学习技术应用到百度的众多产品中。
我们的愿景是让每个人都能通过PaddlePaddle接触深度学习
跟进PaddlePaddle最新特性请参考我们的[版本说明](https://github.com/PaddlePaddle/Paddle/releases)
### Latest PaddlePaddle Release: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2) ### Latest PaddlePaddle Release: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### Install Latest Stable Release: ### Install Latest Stable Release:
``` ```
@ -43,23 +33,6 @@ pip install paddlepaddle-gpu==1.2.0.post85
# For installation on other platform, refer to http://paddlepaddle.org/ # For installation on other platform, refer to http://paddlepaddle.org/
``` ```
### PaddlePaddle最新版本: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### 安装最新稳定版本:
```
# Linux CPU
pip install paddlepaddle
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.2.0.post87
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.2.0.post85
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
```
## Features ## Features
- **Flexibility** - **Flexibility**
@ -100,38 +73,10 @@ pip install paddlepaddle-gpu==1.2.0.post85
Baidu and it has achieved a significant impact. We hope you can also explore Baidu and it has achieved a significant impact. We hope you can also explore
the capability of PaddlePaddle to make an impact on your product. the capability of PaddlePaddle to make an impact on your product.
## 特点
- **灵活性**
PaddlePaddle支持丰富的神经网络架构和优化算法。易于配置复杂模型例如带有注意力机制或复杂记忆连接的神经网络机器翻译模型。
- **高效性**
为了高效使用异步计算资源PaddlePaddle对框架的不同层进行优化包括计算、存储、架构和通信。下面是一些样例
- 通过SSE/AVX 内置函数、BLAS库(例如MKL、OpenBLAS、cuBLAS)或定制的CPU/GPU内核优化数学操作。
- 通过MKL-DNN库优化CNN网络
- 高度优化循环网络,无需执行 `padding` 操作即可处理 **变长** 序列
- 针对高维稀疏数据模型,优化了局部和分布式训练。
- **稳定性**
有了 PaddlePaddle使得利用各种CPU/GPU和机器来加速训练变得简单。PaddlePaddle 通过优化通信可以实现巨大吞吐量和快速执行。
- **连接产品**
另外PaddlePaddle 的设计也易于部署。在百度PaddlePaddle 已经部署到含有巨大用户量的产品和服务上包括广告点击率CTR预测、大规模图像分类、光学字符识别OCR、搜索排序计算机病毒检测、推荐系统等等。PaddlePaddle广泛应用于百度产品中产生了非常重要的影响。我们希望您也能探索 PaddlePaddle 的能力,为您的产品创造新的影响力和效果。
## Installation ## Installation
It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html) on our website. It is recommended to read [this doc](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html) on our website.
## 安装
推荐阅读官网上的[安装说明](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html)
## Documentation ## Documentation
We provide [English](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html) and We provide [English](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html) and
@ -153,37 +98,9 @@ We provide [English](http://paddlepaddle.org/documentation/docs/en/1.2/getstarte
We appreciate your contributions! We appreciate your contributions!
## 文档
我们提供[英文](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)和
[中文](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html) 文档
- [深度学习101](https://github.com/PaddlePaddle/book)
或许您想从这个在线交互式书籍开始可以在Jupyter Notebook中运行
- [分布式训练](http://paddlepaddle.org/documentation/docs/zh/1.2/user_guides/howto/training/cluster_howto.html)
可以在MPI集群上运行分布式训练任务
- [Python API](http://paddlepaddle.org/documentation/docs/zh/1.2/api_cn/index_cn.html)
新的API支持代码更少更简洁的程序
- [贡献方式](http://paddlepaddle.org/documentation/docs/zh/1.2/advanced_usage/development/contribute_to_paddle/index_cn.html)
欢迎您的贡献!
## Ask Questions ## Ask Questions
You are welcome to submit questions and bug reports as [Github Issues](https://github.com/PaddlePaddle/Paddle/issues). You are welcome to submit questions and bug reports as [Github Issues](https://github.com/PaddlePaddle/Paddle/issues).
## 答疑
欢迎您将问题和bug报告以[Github Issues](https://github.com/PaddlePaddle/Paddle/issues)的形式提交
## Copyright and License ## Copyright and License
PaddlePaddle is provided under the [Apache-2.0 license](LICENSE). PaddlePaddle is provided under the [Apache-2.0 license](LICENSE).
## 版权和许可证
PaddlePaddle由[Apache-2.0 license](LICENSE)提供

@ -0,0 +1,88 @@
# PaddlePaddle
[English](./README.md) | 简体中文
[![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle)
[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)
[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html)
[![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases)
[![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE)
欢迎来到 PaddlePaddle GitHub
PaddlePaddle (PArallel Distributed Deep LEarning) 是一个简单易用、高效灵活、可扩展的深度学习平台,最初由百度科学家和工程师共同开发,目的是将深度学习技术应用到百度的众多产品中。
我们的愿景是让每个人都能通过PaddlePaddle接触深度学习
跟进PaddlePaddle最新特性请参考我们的[版本说明](https://github.com/PaddlePaddle/Paddle/releases)
### PaddlePaddle最新版本: [Fluid 1.2.0](https://github.com/PaddlePaddle/Paddle/tree/release/1.2)
### 安装最新稳定版本:
```
# Linux CPU
pip install paddlepaddle
# Linux GPU cuda9cudnn7
pip install paddlepaddle-gpu
# Linux GPU cuda8cudnn7
pip install paddlepaddle-gpu==1.2.0.post87
# Linux GPU cuda8cudnn5
pip install paddlepaddle-gpu==1.2.0.post85
# 其他平台上的安装指引请参考 http://paddlepaddle.org/
```
## 特性
- **灵活性**
PaddlePaddle支持丰富的神经网络架构和优化算法。易于配置复杂模型例如带有注意力机制或复杂记忆连接的神经网络机器翻译模型。
- **高效性**
为了高效使用异步计算资源PaddlePaddle对框架的不同层进行优化包括计算、存储、架构和通信。下面是一些样例
- 通过SSE/AVX 内置函数、BLAS库(例如MKL、OpenBLAS、cuBLAS)或定制的CPU/GPU内核优化数学操作。
- 通过MKL-DNN库优化CNN网络
- 高度优化循环网络,无需执行 `padding` 操作即可处理 **变长** 序列
- 针对高维稀疏数据模型,优化了局部和分布式训练。
- **稳定性**
有了 PaddlePaddle使得利用各种CPU/GPU和机器来加速训练变得简单。PaddlePaddle 通过优化通信可以实现巨大吞吐量和快速执行。
- **与产品相连**
另外PaddlePaddle 的设计也易于部署。在百度PaddlePaddle 已经部署到含有巨大用户量的产品和服务上包括广告点击率CTR预测、大规模图像分类、光学字符识别OCR、搜索排序计算机病毒检测、推荐系统等等。PaddlePaddle广泛应用于百度产品中产生了非常重要的影响。我们希望您也能探索 PaddlePaddle 的能力,为您的产品创造新的影响力和效果。
## 安装
推荐阅读官网上的[安装说明](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/install/index_cn.html)
## 文档
我们提供[英文](http://paddlepaddle.org/documentation/docs/en/1.2/getstarted/index_en.html)和
[中文](http://paddlepaddle.org/documentation/docs/zh/1.2/beginners_guide/index.html) 文档
- [深度学习101](https://github.com/PaddlePaddle/book)
或许您想从这个在线交互式书籍开始可以在Jupyter Notebook中运行
- [分布式训练](http://paddlepaddle.org/documentation/docs/zh/1.2/user_guides/howto/training/cluster_howto.html)
可以在MPI集群上运行分布式训练任务
- [Python API](http://paddlepaddle.org/documentation/docs/zh/1.2/api_cn/index_cn.html)
新的API支持代码更少更简洁的程序
- [贡献方式](http://paddlepaddle.org/documentation/docs/zh/1.2/advanced_usage/development/contribute_to_paddle/index_cn.html)
欢迎您的贡献!
## 答疑
欢迎您将问题和bug报告以[Github Issues](https://github.com/PaddlePaddle/Paddle/issues)的形式提交
## 版权和许可证
PaddlePaddle由[Apache-2.0 license](LICENSE)提供

@ -152,7 +152,12 @@ endif()
if (WITH_MKLML AND MKLML_IOMP_LIB) if (WITH_MKLML AND MKLML_IOMP_LIB)
message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}") message(STATUS "Enable Intel OpenMP with ${MKLML_IOMP_LIB}")
set(OPENMP_FLAGS "-fopenmp") if(WIN32)
# openmp not support well for now on windows
set(OPENMP_FLAGS "")
else(WIN32)
set(OPENMP_FLAGS "-fopenmp")
endif(WIN32)
set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) set(CMAKE_C_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS}) set(CMAKE_CXX_CREATE_SHARED_LIBRARY_FORBIDDEN_FLAGS ${OPENMP_FLAGS})
set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}") set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OPENMP_FLAGS}")

@ -203,25 +203,26 @@ list(APPEND CUDA_NVCC_FLAGS "-w")
list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr") list(APPEND CUDA_NVCC_FLAGS "--expt-relaxed-constexpr")
if (NOT WIN32) if (NOT WIN32)
if(CMAKE_BUILD_TYPE STREQUAL "Debug") if(CMAKE_BUILD_TYPE STREQUAL "Debug")
list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG}) list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_DEBUG})
elseif(CMAKE_BUILD_TYPE STREQUAL "Release") elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE}) list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE})
elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo") elseif(CMAKE_BUILD_TYPE STREQUAL "RelWithDebInfo")
list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO}) list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELWITHDEBINFO})
elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel") elseif(CMAKE_BUILD_TYPE STREQUAL "MinSizeRel")
# nvcc 9 does not support -Os. Use Release flags instead # nvcc 9 does not support -Os. Use Release flags instead
list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE}) list(APPEND CUDA_NVCC_FLAGS ${CMAKE_CXX_FLAGS_RELEASE})
endif() endif()
else(NOT WIN32) else(NOT WIN32)
list(APPEND CUDA_NVCC_FLAGS "--compiler-options;/bigobj") list(APPEND CUDA_NVCC_FLAGS "-Xcompiler \"/wd 4244 /wd 4267 /wd 4819\"")
if(CMAKE_BUILD_TYPE STREQUAL "Debug") list(APPEND CUDA_NVCC_FLAGS "--compiler-options;/bigobj")
list(APPEND CUDA_NVCC_FLAGS "-g -G") if(CMAKE_BUILD_TYPE STREQUAL "Debug")
# match the cl's _ITERATOR_DEBUG_LEVEL list(APPEND CUDA_NVCC_FLAGS "-g -G")
list(APPEND CUDA_NVCC_FLAGS "-D_DEBUG") # match the cl's _ITERATOR_DEBUG_LEVEL
elseif(CMAKE_BUILD_TYPE STREQUAL "Release") list(APPEND CUDA_NVCC_FLAGS "-D_DEBUG")
list(APPEND CUDA_NVCC_FLAGS "-O3 -DNDEBUG") elseif(CMAKE_BUILD_TYPE STREQUAL "Release")
else() list(APPEND CUDA_NVCC_FLAGS "-O3 -DNDEBUG")
else()
message(FATAL "Windows only support Release or Debug build now. Please set visual studio build type to Release/Debug, x64 build.") message(FATAL "Windows only support Release or Debug build now. Please set visual studio build type to Release/Debug, x64 build.")
endif() endif()
endif(NOT WIN32) endif(NOT WIN32)

@ -20,8 +20,10 @@ SET(GLOG_INCLUDE_DIR "${GLOG_INSTALL_DIR}/include" CACHE PATH "glog include dire
IF(WIN32) IF(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE) SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.lib" CACHE FILEPATH "glog library." FORCE)
SET(GLOG_CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4267 /wd4530")
ELSE(WIN32) ELSE(WIN32)
SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE) SET(GLOG_LIBRARIES "${GLOG_INSTALL_DIR}/lib/libglog.a" CACHE FILEPATH "glog library." FORCE)
SET(GLOG_CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS})
ENDIF(WIN32) ENDIF(WIN32)
INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR}) INCLUDE_DIRECTORIES(${GLOG_INCLUDE_DIR})
@ -39,7 +41,7 @@ ExternalProject_Add(
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${GLOG_CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE} -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG} -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}

@ -49,6 +49,8 @@ IF(NOT WIN32)
SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value") SET(MKLDNN_FLAG "${MKLDNN_FLAG} -Wno-unused-result -Wno-unused-value")
SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}") SET(MKLDNN_CFLAG "${CMAKE_C_FLAGS} ${MKLDNN_FLAG}")
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}") SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} ${MKLDNN_FLAG}")
ELSE()
SET(MKLDNN_CXXFLAG "${CMAKE_CXX_FLAGS} /EHsc")
ENDIF(NOT WIN32) ENDIF(NOT WIN32)
ExternalProject_Add( ExternalProject_Add(
@ -61,7 +63,6 @@ ExternalProject_Add(
UPDATE_COMMAND "" UPDATE_COMMAND ""
CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER} CMAKE_ARGS -DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER} CMAKE_ARGS -DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
CMAKE_ARGS -DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE} CMAKE_ARGS -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
CMAKE_ARGS -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG} CMAKE_ARGS -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} CMAKE_ARGS -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}

@ -20,6 +20,12 @@ set(SNAPPY_SOURCES_DIR ${THIRD_PARTY_PATH}/snappy)
set(SNAPPY_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy) set(SNAPPY_INSTALL_DIR ${THIRD_PARTY_PATH}/install/snappy)
set(SNAPPY_INCLUDE_DIR "${SNAPPY_INSTALL_DIR}/include" CACHE PATH "snappy include directory." FORCE) set(SNAPPY_INCLUDE_DIR "${SNAPPY_INSTALL_DIR}/include" CACHE PATH "snappy include directory." FORCE)
if(WIN32)
SET(SNAPPY_CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /wd4244 /wd4267")
else()
SET(SNAPPY_CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS})
endif()
ExternalProject_Add( ExternalProject_Add(
extern_snappy extern_snappy
GIT_REPOSITORY "https://github.com/google/snappy" GIT_REPOSITORY "https://github.com/google/snappy"
@ -31,7 +37,7 @@ ExternalProject_Add(
-DCMAKE_C_FLAGS=${CMAKE_C_FLAGS} -DCMAKE_C_FLAGS=${CMAKE_C_FLAGS}
-DCMAKE_C_FLAGS_DEBUG=${CMAKE_C_FLAGS_DEBUG} -DCMAKE_C_FLAGS_DEBUG=${CMAKE_C_FLAGS_DEBUG}
-DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE} -DCMAKE_C_FLAGS_RELEASE=${CMAKE_C_FLAGS_RELEASE}
-DCMAKE_CXX_FLAGS=${CMAKE_CXX_FLAGS} -DCMAKE_CXX_FLAGS=${SNAPPY_CMAKE_CXX_FLAGS}
-DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE} -DCMAKE_CXX_FLAGS_RELEASE=${CMAKE_CXX_FLAGS_RELEASE}
-DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG} -DCMAKE_CXX_FLAGS_DEBUG=${CMAKE_CXX_FLAGS_DEBUG}
-DCMAKE_INSTALL_PREFIX=${SNAPPY_INSTALL_DIR} -DCMAKE_INSTALL_PREFIX=${SNAPPY_INSTALL_DIR}

@ -147,12 +147,6 @@ set(GPU_COMMON_FLAGS
-Wno-error=unused-function # Warnings in Numpy Header. -Wno-error=unused-function # Warnings in Numpy Header.
-Wno-error=array-bounds # Warnings in Eigen::array -Wno-error=array-bounds # Warnings in Eigen::array
) )
else(NOT WIN32)
set(COMMON_FLAGS
"/w") #disable all warnings.
set(GPU_COMMON_FLAGS
"/w") #disable all warnings
endif(NOT WIN32) endif(NOT WIN32)
if (APPLE) if (APPLE)
@ -193,8 +187,7 @@ safe_set_static_flag()
CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO CMAKE_CXX_FLAGS_MINSIZEREL CMAKE_CXX_FLAGS_RELWITHDEBINFO
CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO) CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${flag_var} MATCHES "/W3") string(REGEX REPLACE "(^| )/W[0-9]( |$)" " " ${flag_var} "${${flag_var}}")
string(REGEX REPLACE "/W3" "/w" ${flag_var} "${${flag_var}}") set(flag_var "${flag_var} /w")
endif(${flag_var} MATCHES "/W3")
endforeach(flag_var) endforeach(flag_var)
endif(WIN32) endif(WIN32)

@ -52,8 +52,8 @@ function(op_library TARGET)
endif() endif()
if(WITH_MKLDNN) if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}") string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc) if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/mkldnn/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs ${MKLDNN_FILE}.cc) list(APPEND mkldnn_cc_srcs mkldnn/${MKLDNN_FILE}.cc)
endif() endif()
endif() endif()
else() else()

@ -31,8 +31,23 @@ while ("${PADDLE_VERSION}" STREQUAL "")
set(tmp_version "${GIT_TAG_NAME}~1") set(tmp_version "${GIT_TAG_NAME}~1")
endif() endif()
else() else()
# otherwise, we always set PADDLE_VERSION to 0.0.0 to represent latest execute_process(
set(PADDLE_VERSION "0.0.0") COMMAND ${GIT_EXECUTABLE} describe --exact-match --tags ${tmp_version}
WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}
OUTPUT_VARIABLE GIT_EXACT_TAG_NAME
RESULT_VARIABLE GIT_EXACT_TAG_RESULT
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if (NOT ${GIT_EXACT_TAG_NAME})
# Check if current branch is tag branch
if (${GIT_EXACT_TAG_NAME} MATCHES "v${TAG_VERSION_REGEX}")
string(REPLACE "v" "" PADDLE_VERSION ${GIT_EXACT_TAG_NAME})
else()
set(PADDLE_VERSION "0.0.0")
endif()
else()
# otherwise, we always set PADDLE_VERSION to 0.0.0 to represent latest
set(PADDLE_VERSION "0.0.0")
endif()
endif() endif()
else() else()
set(PADDLE_VERSION "0.0.0") set(PADDLE_VERSION "0.0.0")

@ -122,7 +122,7 @@ paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None,
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None)) paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False)) paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False)) paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name'], varargs=None, keywords=None, defaults=(0, True, None)) paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None)) paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None))
@ -142,10 +142,10 @@ paddle.fluid.layers.label_smooth ArgSpec(args=['label', 'prior_dist', 'epsilon',
paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0)) paddle.fluid.layers.roi_pool ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale'], varargs=None, keywords=None, defaults=(1, 1, 1.0))
paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None)) paddle.fluid.layers.roi_align ArgSpec(args=['input', 'rois', 'pooled_height', 'pooled_width', 'spatial_scale', 'sampling_ratio', 'name'], varargs=None, keywords=None, defaults=(1, 1, 1.0, -1, None))
paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,)) paddle.fluid.layers.dice_loss ArgSpec(args=['input', 'label', 'epsilon'], varargs=None, keywords=None, defaults=(1e-05,))
paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None)) paddle.fluid.layers.image_resize ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'resample', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, 'BILINEAR', None, True, 1))
paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',)) paddle.fluid.layers.image_resize_short ArgSpec(args=['input', 'out_short_len', 'resample'], varargs=None, keywords=None, defaults=('BILINEAR',))
paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.layers.resize_bilinear ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners', 'align_mode'], varargs=None, keywords=None, defaults=(None, None, None, None, True, 1))
paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.layers.resize_nearest ArgSpec(args=['input', 'out_shape', 'scale', 'name', 'actual_shape', 'align_corners'], varargs=None, keywords=None, defaults=(None, None, None, None, True))
paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.gather ArgSpec(args=['input', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.sequence_scatter ArgSpec(args=['input', 'index', 'updates', 'name'], varargs=None, keywords=None, defaults=(None,))
@ -322,9 +322,11 @@ paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_class
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None)) paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None)) paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None)) paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_clip ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None)) paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1)) paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
@ -360,6 +362,9 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None)) paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None)) paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.Calibrator.__init__ ArgSpec(args=['self'], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.contrib.Calibrator.sample_data ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.Calibrator.save_int8_model ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.reader.ctr_reader.ctr_reader ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.reader.ctr_reader.ctr_reader ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None)) paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None)) paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))

@ -128,7 +128,7 @@ cc_test(version_test SRCS version_test.cc DEPS version)
cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version) cc_library(proto_desc SRCS var_desc.cc op_desc.cc block_desc.cc program_desc.cc DEPS shape_inference op_info operator glog version)
cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc) cc_library(op_registry SRCS op_registry.cc DEPS op_proto_maker op_info operator glog proto_desc memory_optimize_helper)
nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry) nv_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
py_proto_compile(framework_py_proto SRCS framework.proto data_feed.proto) py_proto_compile(framework_py_proto SRCS framework.proto data_feed.proto)
@ -192,6 +192,7 @@ cc_library(prune SRCS prune.cc DEPS framework_proto)
cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context)
cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
proto_desc) proto_desc)
cc_test(inplace_op_inference_test SRCS inplace_op_inference_test.cc DEPS op_registry proto_desc op_info memory_optimize_helper)
cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_library(selected_rows SRCS selected_rows.cc DEPS tensor)
cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)

@ -50,7 +50,9 @@ cc_library(data_balance_op_handle SRCS data_balance_op_handle.cc DEPS op_handle_
cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor) cc_library(gather_op_handle SRCS gather_op_handle.cc DEPS op_handle_base scope ddim memory variable_visitor)
cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope) cc_library(fuse_vars_op_handle SRCS fuse_vars_op_handle.cc DEPS op_handle_base scope)
cc_library(memory_optimize_pass SRCS analysis_var_pass.cc memory_reuse_types.cc DEPS graph graph_helper pass) cc_library(memory_optimize_helper SRCS memory_optimize_helper.cc DEPS graph graph_helper)
cc_library(memory_optimize_pass SRCS memory_optimize_pass.cc DEPS memory_optimize_helper pass)
cc_library(inplace_op_pass SRCS inplace_op_pass.cc DEPS memory_optimize_pass op_info)
cc_library(modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper) cc_library(modify_op_lock_and_record_event_pass SRCS modify_op_lock_and_record_event_pass.cc DEPS computation_op_handle op_graph_view multi_devices_helper)
cc_library(memory_early_delete_pass SRCS memory_early_delete_pass.cc DEPS memory_optimize_pass computation_op_handle scale_loss_grad_op_handle rpc_op_handle cc_library(memory_early_delete_pass SRCS memory_early_delete_pass.cc DEPS memory_optimize_pass computation_op_handle scale_loss_grad_op_handle rpc_op_handle
all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass) all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle graph graph_helper pass)
@ -65,12 +67,12 @@ cc_library(all_reduce_deps_pass SRCS all_reduce_deps_pass.cc DEPS graph graph_he
cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle cc_library(multi_devices_graph_pass SRCS multi_devices_graph_pass.cc DEPS multi_devices_helper computation_op_handle
scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle) scale_loss_grad_op_handle rpc_op_handle all_reduce_op_handle reduce_op_handle broadcast_op_handle data_balance_op_handle fused_broadcast_op_handle)
set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass memory_early_delete_pass) set(SSA_GRAPH_EXECUTOR_DEPS graph framework_proto sequential_execution_pass modify_op_lock_and_record_event_pass all_reduce_deps_pass reference_count_pass eager_deletion_pass memory_optimize_pass memory_early_delete_pass inplace_op_pass)
if (WITH_GPU) if (WITH_GPU)
list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass) list(APPEND SSA_GRAPH_EXECUTOR_DEPS reference_count_pass)
endif() endif()
cc_test(memory_reuse_types_test SRCS memory_reuse_types_test.cc memory_reuse_types.cc DEPS framework_proto graph) cc_test(memory_optimize_helper_test SRCS memory_optimize_helper_test.cc memory_optimize_helper.cc DEPS framework_proto graph)
cc_test(analysis_var_pass_test SRCS analysis_var_pass_test.cc analysis_var_pass.cc memory_reuse_types.cc DEPS framework_proto graph graph_helper op_registry pass) cc_test(memory_optimize_pass_test SRCS memory_optimize_pass_test.cc memory_optimize_pass.cc memory_optimize_helper.cc DEPS framework_proto graph graph_helper op_registry pass)
cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUTOR_DEPS}) cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ${SSA_GRAPH_EXECUTOR_DEPS})

@ -17,7 +17,7 @@ limitations under the License. */
#include <glog/logging.h> #include <glog/logging.h>
#include <memory> #include <memory>
#include "paddle/fluid/framework/details/memory_reuse_types.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_graph_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_pass.h"
#include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h" #include "paddle/fluid/framework/details/multi_devices_graph_print_pass.h"
#include "paddle/fluid/framework/details/reduce_op_handle.h" #include "paddle/fluid/framework/details/reduce_op_handle.h"
@ -47,6 +47,22 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
AppendPass("sequential_execution_pass"); AppendPass("sequential_execution_pass");
} }
// Add op fusion.
if (strategy.fuse_relu_depthwise_conv_) {
AppendPass("fuse_relu_depthwise_conv_pass");
}
// NOTE(dzhwinter): A note for automatical inplace.
// 1. modify program desc passes should put
// before inplace pass.
// 2. manually configured inplace should put
// before inplace_pass
// Add automatically inplace.
if (strategy_.enable_inplace_) {
AppendPass("inplace_pass");
}
// Add a graph viz pass to record a graph. // Add a graph viz pass to record a graph.
if (!strategy_.debug_graphviz_path_.empty()) { if (!strategy_.debug_graphviz_path_.empty()) {
auto viz_pass = AppendPass("graph_viz_pass"); auto viz_pass = AppendPass("graph_viz_pass");
@ -55,10 +71,6 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path)); viz_pass->Set<std::string>("graph_viz_path", new std::string(graph_path));
} }
// Add op fusion.
if (strategy.fuse_relu_depthwise_conv_) {
AppendPass("fuse_relu_depthwise_conv_pass");
}
if (strategy.fuse_elewise_add_act_ops_) { if (strategy.fuse_elewise_add_act_ops_) {
auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass"); auto fuse_elewise_add_act_pass = AppendPass("fuse_elewise_add_act_pass");
// Add a graph viz pass to record a graph. // Add a graph viz pass to record a graph.
@ -88,7 +100,7 @@ class ParallelExecutorPassBuilder : public ir::PassBuilder {
// A side-effect of that, memory optimize cannot forsee the fetched vars // A side-effect of that, memory optimize cannot forsee the fetched vars
// , so fetchlist should be set persistable before call the Run interface. // , so fetchlist should be set persistable before call the Run interface.
if (strategy.memory_optimize_) { if (strategy.memory_optimize_) {
auto analysis_var_pass = AppendPass("analysis_var_pass"); auto memory_optimize_pass = AppendPass("memory_optimize_pass");
} }
AppendMultiDevPass(strategy); AppendMultiDevPass(strategy);
@ -186,8 +198,10 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->Erase("nccl_ctxs"); pass->Erase("nccl_ctxs");
pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx); pass->SetNotOwned<platform::NCCLContextMap>("nccl_ctxs", nctx);
#endif #endif
} else if (pass->Type() == "memory_optimize_pass") {
} else if (pass->Type() == "analysis_var_pass") { if (graph->Has(kAllOpDescs)) {
graph->Erase(kAllOpDescs);
}
const std::vector<OpDesc *> *all_op_descs = const std::vector<OpDesc *> *all_op_descs =
new std::vector<OpDesc *>(main_program.Block(0).AllOps()); new std::vector<OpDesc *>(main_program.Block(0).AllOps());
graph->Set<const std::vector<OpDesc *>>(kAllOpDescs, graph->Set<const std::vector<OpDesc *>>(kAllOpDescs,
@ -214,6 +228,13 @@ std::unique_ptr<ir::Graph> BuildStrategy::Apply(
pass->Set<const std::vector<OpDesc *>>( pass->Set<const std::vector<OpDesc *>>(
kAllOpDescs, kAllOpDescs,
new std::vector<OpDesc *>(main_program.Block(0).AllOps())); new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
} else if (pass->Type() == "inplace_pass") {
if (graph->Has(kAllOpDescs)) {
graph->Erase(kAllOpDescs);
}
graph->Set<const std::vector<OpDesc *>>(
kAllOpDescs,
new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
} else if (pass->Type() == "fuse_relu_depthwise_conv_pass") { } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
if (!use_cuda) { if (!use_cuda) {
LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on " LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
@ -239,9 +260,10 @@ USE_PASS(allreduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass); USE_PASS(dist_multi_devices_pass);
USE_PASS(multi_devices_check_pass); USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass); USE_PASS(multi_devices_print_pass);
USE_PASS(analysis_var_pass); USE_PASS(memory_optimize_pass);
USE_PASS(sequential_execution_pass); USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass); USE_PASS(all_reduce_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass); USE_PASS(modify_op_lock_and_record_event_pass);
USE_PASS(inplace_pass);
USE_PASS(lock_free_optimize_pass); USE_PASS(lock_free_optimize_pass);
USE_PASS(graph_to_program_pass); USE_PASS(graph_to_program_pass);

@ -80,6 +80,11 @@ struct BuildStrategy {
bool memory_early_delete_{false}; bool memory_early_delete_{false};
// TODO(dzhwinter):
// make enable_inplace, memory_optimize_
// memory_early_delete_ true by default
bool enable_inplace_{false};
bool enable_sequential_execution_{false}; bool enable_sequential_execution_{false};
bool fuse_broadcast_op_{false}; bool fuse_broadcast_op_{false};

@ -0,0 +1,80 @@
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <string>
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
namespace paddle {
namespace framework {
class DummyOp : public OperatorBase {
public:
DummyOp(const std::string& type, const VariableNameMap& inputs,
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
private:
void RunImpl(const Scope& scope,
const platform::Place& place) const override {}
};
class SumOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
}
};
class AssignOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "").AsDuplicable();
AddOutput("Out", "");
AddComment("");
}
};
class SplitOpMaker : public OpProtoAndCheckerMaker {
public:
void Make() {
AddInput("X", "");
AddOutput("Out", "").AsDuplicable();
AddComment("");
}
};
class DummyVarTypeInference : public VarTypeInference {
public:
void operator()(const OpDesc& op_desc, BlockDesc* block) const override {
auto& inputs = op_desc.Input("X");
auto type = block->Var(inputs.front())->GetType();
auto out_var_name = op_desc.Output("Out").front();
block->Var(out_var_name)->SetType(type);
}
};
} // namespace framework
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -0,0 +1,93 @@
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may abtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <map>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
namespace paddle {
namespace framework {
namespace details {
class GraphView {
public:
GraphView() = default;
void Build(ir::Graph* g);
const std::vector<ir::Node*>& AllOps();
ir::Node* GetNodeByName(const std::string& name,
const std::vector<ir::Node*>& nodes) const;
std::vector<ir::Node*> PendingOpsOnVar(ir::Node* var);
// Will Deperated in the future.
// NOTE(dzhwinter) :
// 1. Python memory optimize will reuse
// memory based var name, so different op output may
// have the same variable name. enable inplace on such node
// will generate a circle in ssa graph.
// 2. DistributeTranspiler will use unique name to
// map the parameter and gradient, must be skipped.
bool InSkipSet(const std::string& var) const;
private:
std::vector<ir::Node*> ops_;
std::unordered_set<std::string> dup_nodes_; // mem opt affect nodes
std::map<ir::Node*, std::unordered_set<ir::Node*>> adj_list_;
};
typedef std::vector<std::pair<ir::Node*, ir::Node*>> SSANodePair;
class InplacePass : public ir::Pass {
public:
InplacePass();
protected:
std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override;
void InitSSAGraphNodes() const;
private:
const SSANodePair TryInplaceModifyVar(const std::string& var,
const std::string& cache_var,
const size_t& idx,
ir::Graph* graph) const;
void CommitModify(const SSANodePair&, ir::Graph* graph) const;
void WithdrawModify(const SSANodePair& nodes, ir::Graph* graph) const;
void InplaceModifyDesc(const std::string& in_var, const std::string& out_var,
const size_t& idx) const;
void TryInplaceOpInputOutput(ir::Node* op, ir::Graph* graph) const;
mutable std::map<std::string, std::vector<ir::Node*>> var_nodes_;
mutable std::unordered_set<std::string> whitelist_;
mutable GraphView view_;
};
} // namespace details
} // namespace framework
} // namespace paddle

@ -16,7 +16,7 @@
#include <queue> #include <queue>
#include <string> #include <string>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/memory_reuse_types.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/multi_devices_helper.h"
#include "paddle/fluid/framework/details/reference_count_pass_helper.h" #include "paddle/fluid/framework/details/reference_count_pass_helper.h"
#include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph_helper.h"

@ -12,8 +12,10 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/memory_reuse_types.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include <functional>
#include <iostream> #include <iostream>
#include <numeric>
#include <sstream> #include <sstream>
#include <string> #include <string>
@ -21,15 +23,17 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
size_t NodeSizeInBytes(const VarDesc& node) {
auto shape = node.GetShape();
int size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>());
size_t type_size = SizeOfType(node.GetDataType());
return type_size * std::abs(size);
}
size_t NodeSizeInBytes(ir::Node* n) { size_t NodeSizeInBytes(ir::Node* n) {
auto* desc = FindVarDescInBlock(n); auto* desc = FindVarDescInBlock(n);
auto shape = desc->GetShape(); return NodeSizeInBytes(*desc);
size_t type_size = SizeOfType(desc->GetDataType());
int size = 1;
for (auto& s : shape) {
size *= s;
}
return type_size * std::abs(size);
} }
std::string DebugStringImpl(VarDesc* var) { std::string DebugStringImpl(VarDesc* var) {
@ -83,7 +87,7 @@ struct NodeComparator {
} }
}; };
void OrderedNodePairPool::Insert(ir::Node* var, ir::Node* op) { void OrderedNodeList::Insert(ir::Node* var, ir::Node* op) {
PADDLE_ENFORCE(var->IsVar() && !var->IsCtrlVar()); PADDLE_ENFORCE(var->IsVar() && !var->IsCtrlVar());
PADDLE_ENFORCE(op->IsOp()); PADDLE_ENFORCE(op->IsOp());
if (mark_table_.count(var->Name()) != 0) { if (mark_table_.count(var->Name()) != 0) {
@ -119,11 +123,11 @@ void OrderedNodePairPool::Insert(ir::Node* var, ir::Node* op) {
mark_table_[var->Name()] = it; mark_table_[var->Name()] = it;
} }
int OrderedNodePairPool::GetIndex(ir::Node* var) { int OrderedNodeList::GetIndex(ir::Node* var) {
return std::distance(nodes_.begin(), mark_table_[var->Name()]); return std::distance(nodes_.begin(), mark_table_[var->Name()]);
} }
ir::Node* OrderedNodePairPool::NodeMatch(ir::Node* var) const { ir::Node* OrderedNodeList::NodeMatch(ir::Node* var) const {
ir::Node* found_node = nullptr; ir::Node* found_node = nullptr;
NodeComparator compare_node; NodeComparator compare_node;
@ -136,13 +140,15 @@ ir::Node* OrderedNodePairPool::NodeMatch(ir::Node* var) const {
return found_node; return found_node;
} }
void OrderedNodePairPool::Erase(ir::Node* var) { void OrderedNodeList::Erase(ir::Node* var) { Erase(var->Name()); }
PADDLE_ENFORCE(mark_table_.count(var->Name()));
nodes_.erase(mark_table_[var->Name()]); void OrderedNodeList::Erase(const std::string& var) {
mark_table_.erase(var->Name()); PADDLE_ENFORCE(mark_table_.count(var));
nodes_.erase(mark_table_[var]);
mark_table_.erase(var);
} }
std::string OrderedNodePairPool::ToString() const { std::string OrderedNodeList::ToString() const {
std::stringstream ss; std::stringstream ss;
for (auto it = nodes_.begin(); it != nodes_.end(); ++it) { for (auto it = nodes_.begin(); it != nodes_.end(); ++it) {
ss << DebugString(it->first) << " "; ss << DebugString(it->first) << " ";
@ -150,6 +156,43 @@ std::string OrderedNodePairPool::ToString() const {
return ss.str(); return ss.str();
} }
bool NodeCanReused(ir::Node* node) {
if (node == nullptr || !node->IsVar() || node->IsCtrlVar()) return false;
// auto* desc = node->Var();
bool flag = NodeCanReused(*node->Var());
for (auto* op : node->inputs) {
if (op->Op()->HasAttr("force_cpu")) {
// op output force generated in cpu, can not be reused.
flag &= framework::AttrReader(op->Op()->GetAttrMap())
.Get<bool>("force_cpu") == 0;
}
}
return flag;
}
bool NodeCanReused(const VarDesc& node) {
auto type = node.GetType();
if (node.Persistable() || type != proto::VarType::LOD_TENSOR ||
node.GetShape().empty()) {
return false;
}
// vars can be @EMPTY@, @LR_DECAY_REUSE_ID@. For example, while_grad
std::string name = node.Name();
if (!name.empty() && name[0] == '@' && name[name.size() - 1] == '@')
return false;
return true;
}
bool OpHasSubBlock(OpDesc* desc) {
const AttributeMap& attrs = desc->GetAttrMap();
for (auto& attr : attrs) {
if (attr.second.type() == typeid(BlockDesc*) || // NOLINT
attr.second.type() == typeid(std::vector<BlockDesc*>)) // NOLINT
return true;
}
return false;
}
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle

@ -43,7 +43,7 @@ using GraphNodePool = std::vector<
// For example, // For example,
// node0[-1, 1] node1[-1, 1, 1], node2[1,1], node3[1,1024], .. // node0[-1, 1] node1[-1, 1, 1], node2[1,1], node3[1,1024], ..
// O(1) insert, delete // O(1) insert, delete
class OrderedNodePairPool { class OrderedNodeList {
public: public:
using NodePair = std::pair<ir::Node*, std::unordered_set<ir::Node*>>; using NodePair = std::pair<ir::Node*, std::unordered_set<ir::Node*>>;
using Iter = typename std::list<NodePair>::iterator; using Iter = typename std::list<NodePair>::iterator;
@ -53,8 +53,12 @@ class OrderedNodePairPool {
void Erase(ir::Node* var); void Erase(ir::Node* var);
void Erase(const std::string& var);
bool Has(ir::Node* var) { return mark_table_.count(var->Name()); } bool Has(ir::Node* var) { return mark_table_.count(var->Name()); }
bool Has(const std::string& var) { return mark_table_.count(var); }
ir::Node* NodeMatch(ir::Node* var) const; ir::Node* NodeMatch(ir::Node* var) const;
// map store non-const iterator, can not promise const // map store non-const iterator, can not promise const
int GetIndex(ir::Node* var); int GetIndex(ir::Node* var);
@ -67,6 +71,11 @@ class OrderedNodePairPool {
ConstIter end() const { return nodes_.end(); } ConstIter end() const { return nodes_.end(); }
size_t size() const { return nodes_.size(); } size_t size() const { return nodes_.size(); }
void Clear() {
mark_table_.clear();
nodes_.clear();
}
private: private:
// for searching. // for searching.
std::unordered_map<std::string, Iter> mark_table_; std::unordered_map<std::string, Iter> mark_table_;
@ -74,14 +83,53 @@ class OrderedNodePairPool {
std::list<NodePair> nodes_; std::list<NodePair> nodes_;
}; };
// valid a tensor can be reuse or not
bool NodeCanReused(ir::Node* node);
// valid a tensor can be reuse or not.
bool NodeCanReused(const VarDesc& node);
// check op has subblock or not
bool OpHasSubBlock(OpDesc* desc);
// node memory size in bytes // node memory size in bytes
size_t NodeSizeInBytes(ir::Node* n); size_t NodeSizeInBytes(ir::Node* n);
// node memory size in bytes
size_t NodeSizeInBytes(const VarDesc&);
std::string DebugString(ir::Node* var); std::string DebugString(ir::Node* var);
// std::string DebugString(VarDesc* var);
VarDesc* FindVarDescInBlock(ir::Node* n); VarDesc* FindVarDescInBlock(ir::Node* n);
template <typename Container, typename Callback>
class FilterVariableImpl {
public:
void operator()(const Container& nodes, Callback callback) {
for (auto* node : nodes) {
callback(node);
}
}
};
// filter var node for op->inputs/outputs
template <typename Callback>
class FilterVariableImpl<std::vector<ir::Node*>, Callback> {
public:
void operator()(const std::vector<ir::Node*>& nodes, Callback callback) {
for (auto* var : nodes) {
if (var->IsVar() && !var->IsCtrlVar()) {
callback(var);
}
}
}
};
template <typename Container, typename Callback>
void FilterVariables(const Container& nodes, Callback callback) {
FilterVariableImpl<Container, Callback>()(nodes, callback);
}
} // namespace details } // namespace details
} // namespace framework } // namespace framework
} // namespace paddle } // namespace paddle

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and // See the License for the specific language governing permissions and
// limitations under the License. // limitations under the License.
#include "paddle/fluid/framework/details/memory_reuse_types.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include <algorithm> #include <algorithm>
#include <iostream> #include <iostream>
#include <memory> #include <memory>
@ -27,8 +27,8 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
TEST(OrderedNodePairPool, Normal) { TEST(OrderedNodeList, Normal) {
OrderedNodePairPool pool; OrderedNodeList pool;
std::vector<std::unique_ptr<ir::Node>> nodes; std::vector<std::unique_ptr<ir::Node>> nodes;
// clang-format off // clang-format off

@ -25,7 +25,7 @@
#include <vector> #include <vector>
#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/details/memory_reuse_types.h" #include "paddle/fluid/framework/details/memory_optimize_helper.h"
#include "paddle/fluid/framework/ir/graph.h" #include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/ir/pass.h"
@ -35,12 +35,10 @@ namespace details {
constexpr char kAllOpDescs[] = "all_op_descs"; constexpr char kAllOpDescs[] = "all_op_descs";
std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph); std::vector<ir::Node*> SortOpLikeDescOrder(const ir::Graph& graph);
// sort op in bfs order
std::vector<ir::Node*> BFSSortGraphOps(const ir::Graph& graph);
class ControlFlowGraph; class ControlFlowGraph;
class AnalysisVarPass : public ir::Pass { class MemoryOptimizePass : public ir::Pass {
protected: protected:
std::unique_ptr<ir::Graph> ApplyImpl( std::unique_ptr<ir::Graph> ApplyImpl(
std::unique_ptr<ir::Graph> graph) const override; std::unique_ptr<ir::Graph> graph) const override;
@ -57,17 +55,14 @@ class AnalysisVarPass : public ir::Pass {
ir::Graph* graph) const; ir::Graph* graph) const;
void SubGraphOptimize(OpDesc* op_desc) const; void SubGraphOptimize(OpDesc* op_desc) const;
// valid a tensor can be reuse or not // 1. scan op with subblock and collect the output/input vars.
bool NodeCanReused(ir::Node* node) const; // while, while_grad, conditional_block
// scan subblock and collect the output/input variables. // 2. scan distributed ops and collect the output/input vars
std::unordered_set<std::string> GetSubBlockVars( void CollectSkipVarsSet(const std::unordered_set<ir::Node*>&) const;
const std::unordered_set<ir::Node*>&) const;
// check op has subblock or not
bool OpHasSubBlock(OpDesc* desc) const;
private: private:
// Reuse Node Pool, Owned. // Reuse Node Pool, Owned.
mutable OrderedNodePairPool pool_; mutable OrderedNodeList pool_;
// controlflow Graph // controlflow Graph
mutable std::unique_ptr<ControlFlowGraph> cfg_; mutable std::unique_ptr<ControlFlowGraph> cfg_;
// skip set // skip set

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save