commit
39f75a13a4
@ -0,0 +1,180 @@
|
||||
# Design Doc: Session
|
||||
|
||||
## Abstract
|
||||
|
||||
The *session* object encapsulates the environment in which the
|
||||
computation graph is executed.
|
||||
|
||||
We will have the *local* session and *remote* session, they offer the
|
||||
same [interface](#interface). The local session encapsulates the local
|
||||
runtime environment and the remote session encapsulates the cluster
|
||||
runtime environment.
|
||||
|
||||
The local runtime environment contains:
|
||||
|
||||
1. computation devices (i.e., CPU, GPU) handles, and
|
||||
1. the [scope](../scope.md) which holds all variables.
|
||||
|
||||
The remote runtime environment contains:
|
||||
|
||||
1. computation devices (i.e., CPU and GPU on node 0, 1) in a cluster,
|
||||
and
|
||||
1. the distributed [scope](../scope.md) in a cluster which holds all
|
||||
variables.
|
||||
|
||||
The user can create a remote session on Paddle Cloud and evaluate the
|
||||
computation graph with it. In this way, the user can control the
|
||||
remote computation resource in a cluster from his local computer.
|
||||
|
||||
|
||||
## Background
|
||||
|
||||
The current design has an implicit global session in which
|
||||
`paddle.eval()` is executed. The pain point is:
|
||||
|
||||
Since the user is not able to explicitly switch between runtime
|
||||
environments, the user cannot run a topology in two independent
|
||||
environments.
|
||||
|
||||
For example, in reinforcement learning, the user may want to have a
|
||||
stale model for inference and a fresh model for training, and only
|
||||
replace the stale model with the fresh model periodically.
|
||||
|
||||
Furthermore, we have no concept that encapsulates a remote environment
|
||||
that executes a computation graph.
|
||||
|
||||
We need the session object to address above issues.
|
||||
|
||||
|
||||
## Session
|
||||
|
||||
A session is an object that owns the runtime environment. All
|
||||
computations are executed through `session.eval()`.
|
||||
|
||||
|
||||
### Interface
|
||||
|
||||
```python
|
||||
eval(
|
||||
targets,
|
||||
feed_dict=None,
|
||||
)
|
||||
```
|
||||
|
||||
Evaluates the target Operations or Variables in `targets`.
|
||||
|
||||
- *targets*: the evaluation targets. Can be a single Operation or
|
||||
Variable, or a list with the Operations or Variables as
|
||||
elements. The value returned by `eval()` has the same shape as the
|
||||
`target` argument.
|
||||
|
||||
The PaddlePaddle program is represented by
|
||||
the [ProgramDesc](../design/program.md), `eval()` will infer the
|
||||
ProgramDesc from the given targets and run the PaddlePaddle
|
||||
program. Please
|
||||
see
|
||||
[this graph](./distributed_architecture.md#local-training-architecture) for
|
||||
the detailed illustration for the local session
|
||||
and
|
||||
[this graph](./distributed_architecture.md#distributed-training-architecture) for
|
||||
the detailed illustration for the remote session.
|
||||
|
||||
- *feed_dict*: a dictionary that contains the tensors which override
|
||||
the edges of the computation graph.
|
||||
|
||||
feed_dict not only can provide the input data, it can override any
|
||||
OP's input as well:
|
||||
|
||||
```python
|
||||
a = pd.constant(2.0, name="a")
|
||||
b = pd.variable(name="b")
|
||||
c = pd.mul(a,b)
|
||||
sess.eval(targets=c, feed_dict={"b":3.0}) # returns 6.0
|
||||
```
|
||||
|
||||
```python
|
||||
close()
|
||||
```
|
||||
|
||||
Closes the session and releases the scope that the session owns.
|
||||
|
||||
|
||||
### Create a Local Session
|
||||
|
||||
```python
|
||||
session(
|
||||
devices=None
|
||||
)
|
||||
```
|
||||
|
||||
Creates a new session. One session owns one global scope, so creating
|
||||
multiple sessions will create different scopes.
|
||||
|
||||
- *devices*: a single `string` or a list of `string` of device names,
|
||||
the corresponding devices will be the computation devices for
|
||||
`eval()`. If not specified, all available devices (e.g., all GPUs)
|
||||
will be used. The user doesn't need to specify the CPU device since
|
||||
it will be always used. Multiple sessions can use the same device.
|
||||
|
||||
|
||||
#### Example
|
||||
|
||||
```Python
|
||||
a = paddle.constant(1.0)
|
||||
b = paddle.constant(2.0)
|
||||
c = a + b
|
||||
sess = paddle.session(devices=["gpu:0", "gpu:1", "fpga:0"])
|
||||
sess.eval(c)
|
||||
sess.close()
|
||||
```
|
||||
|
||||
### Create a Remote Session
|
||||
|
||||
```python
|
||||
create_cloud_job(
|
||||
name,
|
||||
num_trainer,
|
||||
mem_per_trainer,
|
||||
gpu_per_trainer,
|
||||
cpu_per_trainer,
|
||||
num_ps,
|
||||
mem_per_ps,
|
||||
cpu_per_ps,
|
||||
)
|
||||
```
|
||||
|
||||
Creates a Paddle Cloud job. Fails if the job name exists.
|
||||
|
||||
```python
|
||||
get_cloud_job(
|
||||
name
|
||||
)
|
||||
```
|
||||
|
||||
Gets a Paddle Cloud job.
|
||||
|
||||
```python
|
||||
remote_session(
|
||||
job
|
||||
)
|
||||
```
|
||||
|
||||
- *job*: the Paddle Cloud job.
|
||||
|
||||
#### Example
|
||||
|
||||
```Python
|
||||
reader = paddle.reader.recordio("/pfs/home/peter/mnist-train-*") # data stored on Paddle Cloud
|
||||
image = reader.column(0)
|
||||
label = reader.column(1)
|
||||
fc1 = paddle.op.fc(image, size=256, act="sigmoid")
|
||||
fc2 = paddle.op.fc(fc1, size=10, act="softmax")
|
||||
cost = paddle.op.cross_entropy(fc2, label)
|
||||
opt = paddle.optimizer.sgd(cost)
|
||||
|
||||
job = paddle.create_cloud_job("test", 3, "1G", 1, 1, 2, "1G", 1)
|
||||
sess = paddle.remote_ession(job)
|
||||
for i in range(1000):
|
||||
sess.eval(opt)
|
||||
sess.close()
|
||||
```
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue