[Paddle-TRT]: add eltwise,pool2d, prelu, scale, concat, gelu dynamic shape support (#23396)
* add elementwise pool2d, prelu, shuffle channel test=develop * add scale and refine concat eltwise conveter test=develop * refine elementwise converter test=develop * refine ut test and enforce error. test=develop * modify const cast test=developrevert-23830-2.0-beta
parent
c113302826
commit
3acb047a20
@ -0,0 +1,84 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace inference {
|
||||
namespace tensorrt {
|
||||
|
||||
/*
|
||||
* ConcatOp
|
||||
*/
|
||||
class ScaleOpConverter : public OpConverter {
|
||||
public:
|
||||
void operator()(const framework::proto::OpDesc& op,
|
||||
const framework::Scope& scope, bool test_mode) override {
|
||||
VLOG(3) << "convert a fluid scale op to tensorrt mul layer without bias";
|
||||
|
||||
framework::OpDesc op_desc(op, nullptr);
|
||||
// Declare inputs
|
||||
std::vector<nvinfer1::ITensor*> itensors;
|
||||
std::string input_name = op_desc.Input("X").front();
|
||||
std::string out_name = op_desc.Output("Out").front();
|
||||
|
||||
auto input = engine_->GetITensor(input_name);
|
||||
bool bias_after_scale =
|
||||
boost::get<bool>(op_desc.GetAttr("bias_after_scale"));
|
||||
float bias = boost::get<float>(op_desc.GetAttr("bias"));
|
||||
float scale = boost::get<float>(op_desc.GetAttr("scale"));
|
||||
auto create_weights = [&](float data, std::string type) -> float* {
|
||||
std::unique_ptr<framework::Tensor> tmp_tensor(new framework::Tensor());
|
||||
tmp_tensor->Resize({1});
|
||||
auto* tmp_data = tmp_tensor->mutable_data<float>(platform::CPUPlace());
|
||||
tmp_data[0] = data;
|
||||
engine_->SetWeights(out_name + "_scale_op_" + type,
|
||||
std::move(tmp_tensor));
|
||||
return tmp_data;
|
||||
};
|
||||
|
||||
float* bias_ptr = create_weights(bias, "bias");
|
||||
float* scale_ptr = create_weights(scale, "scale");
|
||||
|
||||
TensorRTEngine::Weight scale_weights{nvinfer1::DataType::kFLOAT,
|
||||
static_cast<void*>(scale_ptr), 1};
|
||||
TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT,
|
||||
static_cast<void*>(bias_ptr), 1};
|
||||
TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr,
|
||||
0};
|
||||
nvinfer1::ILayer* layer = nullptr;
|
||||
if (bias_after_scale) {
|
||||
layer = TRT_ENGINE_ADD_LAYER(
|
||||
engine_, Scale, *input, nvinfer1::ScaleMode::kUNIFORM,
|
||||
shift_weights.get(), scale_weights.get(), power_weights.get());
|
||||
} else {
|
||||
// add bias
|
||||
layer = TRT_ENGINE_ADD_LAYER(
|
||||
engine_, Scale, *(input), nvinfer1::ScaleMode::kUNIFORM,
|
||||
shift_weights.get(), power_weights.get(), power_weights.get());
|
||||
// mul scale
|
||||
layer = TRT_ENGINE_ADD_LAYER(
|
||||
engine_, Scale, *(layer->getOutput(0)), nvinfer1::ScaleMode::kUNIFORM,
|
||||
power_weights.get(), scale_weights.get(), power_weights.get());
|
||||
}
|
||||
|
||||
RreplenishLayerAndOutput(layer, "scale", {out_name}, test_mode);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace tensorrt
|
||||
} // namespace inference
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_TRT_OP_CONVERTER(scale, ScaleOpConverter);
|
Loading…
Reference in new issue