parent
cccde65b1c
commit
3bf1ae9b59
@ -0,0 +1,143 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/spectral_norm_op.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class SpectralNormOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Weight"),
|
||||||
|
"Input(Weight) of SpectralNormOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("U"),
|
||||||
|
"Input(U) of SpectralNormOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("V"),
|
||||||
|
"Input(V) of SpectralNormOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of SpectralNormOp should not be null.");
|
||||||
|
|
||||||
|
auto dim_weight = ctx->GetInputDim("Weight");
|
||||||
|
auto weight_dimsize = dim_weight.size();
|
||||||
|
PADDLE_ENFORCE(weight_dimsize >= 2 && weight_dimsize <= 5,
|
||||||
|
"The size of dims of Input(Weights) can only be 2, 3,"
|
||||||
|
"4, 5 for fc, conv1d, conv2d, conv3d layers.");
|
||||||
|
|
||||||
|
int dim = ctx->Attrs().Get<int>("dim");
|
||||||
|
int power_iters = ctx->Attrs().Get<int>("power_iters");
|
||||||
|
PADDLE_ENFORCE(dim >= 0 && dim < weight_dimsize - 1,
|
||||||
|
"Attr(dim) should be larger equal 0 and less then the"
|
||||||
|
"size of dims of Input(Weights) - 1,");
|
||||||
|
PADDLE_ENFORCE(power_iters >= 0,
|
||||||
|
"Attr(power_iters) should be larger equal then 0");
|
||||||
|
|
||||||
|
ctx->SetOutputDim("Out", dim_weight);
|
||||||
|
ctx->ShareLoD("Weight", /*->*/ "Out");
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
|
||||||
|
ctx.GetPlace());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SpectralNormOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override {
|
||||||
|
AddInput("Weight",
|
||||||
|
"The input weight tensor of spectral_norm operator, "
|
||||||
|
"This can be a 2-D, 3-D, 4-D, 5-D tensor which is the"
|
||||||
|
"weights of fc, conv1d, conv2d, conv3d layer.");
|
||||||
|
AddInput("U",
|
||||||
|
"The weight_u tensor of spectral_norm operator, "
|
||||||
|
"This can be a 1-D tensor in shape [H, 1],"
|
||||||
|
"H is the 1st dimentions of Weight after reshape"
|
||||||
|
"corresponding by Attr(dim).");
|
||||||
|
AddInput("V",
|
||||||
|
"The weight_u tensor of spectral_norm operator, "
|
||||||
|
"This can be a 1-D tensor in shape [W, 1],"
|
||||||
|
"W is the 2nd dimentions of Weight after reshape"
|
||||||
|
"corresponding by Attr(dim).");
|
||||||
|
AddOutput("Out",
|
||||||
|
"The output weight tensor of spectral_norm operator, "
|
||||||
|
"This tensor is in same shape with Input(Weight).");
|
||||||
|
|
||||||
|
AddAttr<int>("dim",
|
||||||
|
"dimension corresponding to number of outputs,"
|
||||||
|
"default 0 for fc layer, and 1 for conv1d, conv2d, conv3d"
|
||||||
|
"layers")
|
||||||
|
.SetDefault(0);
|
||||||
|
AddAttr<int>("power_iters",
|
||||||
|
"number of power iterations to calculate"
|
||||||
|
"spectral norm, default is 1.")
|
||||||
|
.SetDefault(1);
|
||||||
|
AddAttr<float>("eps",
|
||||||
|
"epsilob for numerical stability in"
|
||||||
|
"calculating norms")
|
||||||
|
.SetDefault(1e-12);
|
||||||
|
|
||||||
|
AddComment(R"DOC(
|
||||||
|
This operator samples input X to given output shape by using specified
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SpectralNormOpGrad : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Weight"), "Input(Weight) should not be null");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("U"), "Input(U) should not be null");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("V"), "Input(V) should not be null");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
|
||||||
|
"Input(Out@GRAD) should not be null");
|
||||||
|
auto dim_x = ctx->GetInputDim("Weight");
|
||||||
|
if (ctx->HasOutput(framework::GradVarName("Weight"))) {
|
||||||
|
ctx->SetOutputDim(framework::GradVarName("Weight"), dim_x);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override {
|
||||||
|
return framework::OpKernelType(ctx.Input<Tensor>("Weight")->type(),
|
||||||
|
ctx.GetPlace());
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(spectral_norm, ops::SpectralNormOp, ops::SpectralNormOpMaker,
|
||||||
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
||||||
|
REGISTER_OPERATOR(spectral_norm_grad, ops::SpectralNormOpGrad);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
spectral_norm,
|
||||||
|
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::SpectralNormKernel<paddle::platform::CPUDeviceContext, double>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(
|
||||||
|
spectral_norm_grad,
|
||||||
|
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, float>,
|
||||||
|
ops::SpectralNormGradKernel<paddle::platform::CPUDeviceContext, double>);
|
@ -0,0 +1,128 @@
|
|||||||
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/fluid/framework/eigen.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/operators/math/blas.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
using Array1 = Eigen::DSizes<int64_t, 1>;
|
||||||
|
using Array2 = Eigen::DSizes<int64_t, 2>;
|
||||||
|
using IndexPair = Eigen::IndexPair<int>;
|
||||||
|
|
||||||
|
static inline void ResizeWeight(Tensor* weight_mat, const int dim) {
|
||||||
|
auto weight_dims = weight_mat->dims();
|
||||||
|
int h = 1;
|
||||||
|
int w = 1;
|
||||||
|
for (int i = 0; i < weight_dims.size(); i++) {
|
||||||
|
if (i <= dim) {
|
||||||
|
h *= weight_dims[i];
|
||||||
|
} else {
|
||||||
|
w *= weight_dims[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
*weight_mat = weight_mat->Resize({h, w});
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
static inline void CalcMatrixSigmaAndNormWeight(
|
||||||
|
Tensor* sigma, Tensor* u, Tensor* v, Tensor* weight, const int power_iters,
|
||||||
|
const float eps, const framework::ExecutionContext& ctx) {
|
||||||
|
auto& place = *ctx.template device_context<DeviceContext>().eigen_device();
|
||||||
|
auto sigma_t = EigenTensor<T, 2>::From(*sigma);
|
||||||
|
auto weight_t = EigenTensor<T, 2>::From(*weight);
|
||||||
|
auto u_t = EigenTensor<T, 1>::From(*u);
|
||||||
|
auto v_t = EigenTensor<T, 1>::From(*v);
|
||||||
|
|
||||||
|
const int h = weight->dims()[0];
|
||||||
|
const int w = weight->dims()[1];
|
||||||
|
|
||||||
|
Eigen::array<int, 2> perm = {1, 0};
|
||||||
|
Eigen::array<IndexPair, 1> product_dims = {IndexPair(1, 0)};
|
||||||
|
auto weight_trans_t = weight_t.shuffle(perm);
|
||||||
|
LOG(ERROR) << "weight: " << weight_t;
|
||||||
|
LOG(ERROR) << "weight_trans: " << weight_trans_t;
|
||||||
|
for (int i = 0; i < power_iters; i++) {
|
||||||
|
v_t.device(place) = weight_trans_t.contract(u_t, product_dims);
|
||||||
|
LOG(ERROR) << "iter v: " << v_t;
|
||||||
|
auto v_t_norm =
|
||||||
|
v_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||||||
|
Array1(w));
|
||||||
|
LOG(ERROR) << "iter v_norm: " << v_t_norm;
|
||||||
|
v_t.device(place) = v_t / (v_t_norm + v_t_norm.constant(eps));
|
||||||
|
LOG(ERROR) << "iter norm v: " << v_t;
|
||||||
|
u_t.device(place) = weight_t.contract(v_t, product_dims);
|
||||||
|
LOG(ERROR) << "iter u: " << u_t;
|
||||||
|
auto u_t_norm =
|
||||||
|
u_t.square().sum().sqrt().eval().reshape(Array1(1)).broadcast(
|
||||||
|
Array1(h));
|
||||||
|
u_t.device(place) = u_t / (u_t_norm + u_t_norm.constant(eps));
|
||||||
|
LOG(ERROR) << "iter norm u: " << u_t;
|
||||||
|
}
|
||||||
|
LOG(ERROR) << "h" << h << "w" << w;
|
||||||
|
LOG(ERROR) << "u: " << u_t;
|
||||||
|
LOG(ERROR) << "v: " << v_t;
|
||||||
|
LOG(ERROR) << "weight_v: " << weight_t.contract(v_t, product_dims);
|
||||||
|
sigma_t.device(place) = (u_t * weight_t.contract(v_t, product_dims))
|
||||||
|
.sum()
|
||||||
|
.eval()
|
||||||
|
.reshape(Array2(1, 1))
|
||||||
|
.broadcast(Array2(h, w));
|
||||||
|
LOG(ERROR) << "weight: " << weight_t;
|
||||||
|
LOG(ERROR) << "sigma: " << sigma_t;
|
||||||
|
weight_t.device(place) = weight_t / sigma_t;
|
||||||
|
}
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SpectralNormKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto weight = ctx.Input<Tensor>("Weight");
|
||||||
|
auto u = ctx.Input<Tensor>("U");
|
||||||
|
auto v = ctx.Input<Tensor>("V");
|
||||||
|
auto out = ctx.Output<Tensor>("Out");
|
||||||
|
|
||||||
|
int dim = ctx.Attr<int>("dim");
|
||||||
|
int power_iters = ctx.Attr<int>("power_iters");
|
||||||
|
float eps = ctx.Attr<float>("eps");
|
||||||
|
|
||||||
|
Tensor weight_mat;
|
||||||
|
TensorCopySync(*weight, ctx.GetPlace(), &weight_mat);
|
||||||
|
ResizeWeight(&weight_mat, dim);
|
||||||
|
|
||||||
|
Tensor sigma;
|
||||||
|
sigma.mutable_data<T>(weight->dims(), ctx.GetPlace());
|
||||||
|
Tensor uu, vv;
|
||||||
|
TensorCopySync(*u, ctx.GetPlace(), &uu);
|
||||||
|
TensorCopySync(*v, ctx.GetPlace(), &vv);
|
||||||
|
CalcMatrixSigmaAndNormWeight<DeviceContext, T>(
|
||||||
|
&sigma, &uu, &vv, &weight_mat, power_iters, eps, ctx);
|
||||||
|
TensorCopySync(weight_mat, ctx.GetPlace(), out);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SpectralNormGradKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,64 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import division
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
from paddle.fluid import core
|
||||||
|
|
||||||
|
|
||||||
|
class TestSpectralNormOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.initTestCase()
|
||||||
|
self.op_type = 'spectral_norm'
|
||||||
|
# weight = np.random.random(self.weight_shape).astype('float32')
|
||||||
|
# u = np.random.random(self.u_shape).astype('float32')
|
||||||
|
# v = np.random.random(self.u_shape).astype('float32')
|
||||||
|
weight = np.ones(self.weight_shape).astype('float32')
|
||||||
|
weight[1, :] = 2.
|
||||||
|
u = np.ones(self.u_shape).astype('float32')
|
||||||
|
v = np.ones(self.v_shape).astype('float32')
|
||||||
|
|
||||||
|
self.attrs = {
|
||||||
|
"dim": self.dim,
|
||||||
|
"power_iters": self.power_iters,
|
||||||
|
"eps": self.eps,
|
||||||
|
}
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
"Weight": weight,
|
||||||
|
"U": u,
|
||||||
|
"V": v,
|
||||||
|
}
|
||||||
|
|
||||||
|
output = weight
|
||||||
|
self.outputs = {"Out": weight, }
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def initTestCase(self):
|
||||||
|
self.weight_shape = (2, 3)
|
||||||
|
self.u_shape = (2, )
|
||||||
|
self.v_shape = (3, )
|
||||||
|
self.dim = 0
|
||||||
|
self.power_iters = 1
|
||||||
|
self.eps = 1e-12
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue