remove conflict and fix InferShape function

tonyyang-svail-feed-op-desgin
chengduoZH 8 years ago
commit 3c0f079333

@ -13,9 +13,13 @@ function train() {
log="logs/${topology}-mkldnn-${bs}.log"
elif [ $3 == "False" ]; then
thread=`nproc`
# each trainer_count use only 1 core to avoid conflict
export OMP_NUM_THREADS=1
export MKL_NUM_THREADS=1
log="logs/${topology}-${thread}mklml-${bs}.log"
else
echo "Wrong input $3, use True or False."
exit 0
fi
args="batch_size=${bs}"
config="${topology}.py"

@ -0,0 +1,111 @@
###################
编译安装与单元测试
###################
.. contents::
1. 运行Docker GPU镜像出现 "CUDA driver version is insufficient"
----------------------------------------------------------------
用户在使用PaddlePaddle GPU的Docker镜像的时候常常出现 `Cuda Error: CUDA driver version is insufficient for CUDA runtime version`, 原因在于没有把机器上CUDA相关的驱动和库映射到容器内部。
具体的解决方法是:
.. code-block:: bash
$ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')"
$ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
$ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu
更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 <http://www.paddlepaddle.org/doc_cn/build_and_install/install/docker_install.html>`_
2. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致
----------------------------------------------------------------
这是目前CMake寻找Python的逻辑存在缺陷如果系统安装了多个Python版本CMake找到的Python库和Python解释器版本可能有不一致现象导致编译PaddlePaddle失败。正确的解决方法是
用户强制指定特定的Python版本具体操作如下
.. code-block:: bash
cmake .. -DPYTHON_EXECUTABLE=<exc_path> -DPYTHON_LIBRARY=<lib_path> -DPYTHON_INCLUDE_DIR=<inc_path>
用户需要指定本机上Python的路径``<exc_path>``, ``<lib_path>``, ``<inc_path>``
3. CMake源码编译Paddle版本号为0.0.0
--------------------------------------
如果运行 :code:`paddle version`, 出现 :code:`PaddlePaddle 0.0.0`;或者运行 :code:`cmake ..`,出现
.. code-block:: bash
CMake Warning at cmake/version.cmake:20 (message):
Cannot add paddle version from git tag
那么用户需要拉取所有的远程分支到本机,命令为 :code:`git fetch upstream`然后重新cmake即可。
4. paddlepaddle\*.whl is not a supported wheel on this platform.
------------------------------------------------------------------------
出现这个问题的主要原因是没有找到和当前系统匹配的paddlepaddle安装包。最新的paddlepaddle python安装包支持Linux x86_64和MacOS 10.12操作系统并安装了python 2.7和pip 9.0.1。
更新 :code:`pip` 包的方法是\:
.. code-block:: bash
pip install --upgrade pip
如果还不行,可以执行 :code:`python -c "import pip; print(pip.pep425tags.get_supported())"` 获取当前系统支持的python包的后缀
并对比是否和正在安装的后缀一致。
如果系统支持的是 :code:`linux_x86_64` 而安装包是 :code:`manylinux1_x86_64` 需要升级pip版本到最新
如果系统支持 :code:`manylinux1_x86_64` 而安装包(本地)是 :code:`linux_x86_64` 可以重命名这个whl包为 :code:`manylinux1_x86_64` 再安装。
5. 编译安装后执行 import paddle.v2 as paddle 报ImportError: No module named v2
------------------------------------------------------------------------------------------
先查看一下是否曾经安装过paddle v1版本有的话需要先卸载
pip uninstall py_paddle paddle
然后安装paddle的python环境, 在build目录下执行
pip install python/dist/paddle*.whl && pip install ../paddle/dist/py_paddle*.whl
6. 遇到“非法指令”或者是“illegal instruction”
--------------------------------------------
PaddlePaddle使用avx SIMD指令提高cpu执行效率因此错误的使用二进制发行版可能会导致这种错误请选择正确的版本。
7. python相关的单元测试都过不了
--------------------------------
如果出现以下python相关的单元测试都过不了的情况
.. code-block:: bash
24 - test_PyDataProvider (Failed)
26 - test_RecurrentGradientMachine (Failed)
27 - test_NetworkCompare (Failed)
28 - test_PyDataProvider2 (Failed)
32 - test_Prediction (Failed)
33 - test_Compare (Failed)
34 - test_Trainer (Failed)
35 - test_TrainerOnePass (Failed)
36 - test_CompareTwoNets (Failed)
37 - test_CompareTwoOpts (Failed)
38 - test_CompareSparse (Failed)
39 - test_recurrent_machine_generation (Failed)
40 - test_PyDataProviderWrapper (Failed)
41 - test_config_parser (Failed)
42 - test_swig_api (Failed)
43 - layers_test (Failed)
并且查询PaddlePaddle单元测试的日志提示
.. code-block:: bash
paddle package is already in your PYTHONPATH. But unittest need a clean environment.
Please uninstall paddle package before start unittest. Try to 'pip uninstall paddle'.
解决办法是:
* 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面单元测试会引用site-packages里面的python包而不是源码目录里 :code:`/python` 目录下的python包。同时即便设置 :code:`PYTHONPATH`:code:`/python` 也没用因为python的搜索路径是优先已经安装的python包。

@ -0,0 +1,17 @@
###############
集群训练与预测
###############
.. contents::
1. 集群多节点训练,日志中保存均为网络通信类错误
------------------------------------------------
集群多节点训练,日志报错为网络通信类错误,比如 :code:`Connection reset by peer` 等。
此类报错通常是由于某一个节点的错误导致这个节点的训练进程退出,从而引发其他节点无法连接导致,可以参考下面的步骤排查:
* 从 :code:`train.log` :code:`server.log` 找到最早报错的地方查看是否是其他错误引发的报错比如FPE内存不足磁盘空间不足等
* 如果发现最早的报错就是网络通信的问题很有可能是非独占方式执行导致的端口冲突可以联系OP看当前MPI集群是否支持resource=full参数提交如果支持增加此参数提交并更换job 端口。
* 如果当前MPI集群并不支持任务独占模式可以联系OP是否可以更换集群或升级当前集群。

File diff suppressed because it is too large Load Diff

@ -0,0 +1,213 @@
###############
本地训练与预测
###############
.. contents::
1. 如何减少内存占用
-------------------
神经网络的训练本身是一个非常消耗内存和显存的工作经常会消耗数10GB的内存和数GB的显存。
PaddlePaddle的内存占用主要分为如下几个方面\:
* DataProvider缓冲池内存只针对内存
* 神经元激活内存(针对内存和显存)
* 参数内存 (针对内存和显存)
* 其他内存杂项
其中其他内存杂项是指PaddlePaddle本身所用的一些内存包括字符串分配临时变量等等暂不考虑在内。
减少DataProvider缓冲池内存
++++++++++++++++++++++++++
PyDataProvider使用的是异步加载同时在内存里直接随即选取数据来做Shuffle。即
.. graphviz::
digraph {
rankdir=LR;
数据文件 -> 内存池 -> PaddlePaddle训练
}
所以,减小这个内存池即可减小内存占用,同时也可以加速开始训练前数据载入的过程。但是,这
个内存池实际上决定了shuffle的粒度。所以如果将这个内存池减小又要保证数据是随机的
那么最好将数据文件在每次读取之前做一次shuffle。可能的代码为
.. literalinclude:: src/reduce_min_pool_size.py
这样做可以极大的减少内存占用,并且可能会加速训练过程,详细文档参考 :ref:`api_pydataprovider2`
神经元激活内存
++++++++++++++
神经网络在训练的时候,会对每一个激活暂存一些数据,如神经元激活值等。
在反向传递的时候,这些数据会被用来更新参数。这些数据使用的内存主要和两个参数有关系,
一是batch size另一个是每条序列(Sequence)长度。所以其实也是和每个mini-batch中包含
的时间步信息成正比。
所以做法可以有两种:
* 减小batch size。 即在网络配置中 :code:`settings(batch_size=1000)` 设置成一个小一些的值。但是batch size本身是神经网络的超参数减小batch size可能会对训练结果产生影响。
* 减小序列的长度或者直接扔掉非常长的序列。比如一个数据集大部分序列长度是100-200,
但是突然有一个10000长的序列就很容易导致内存超限特别是在LSTM等RNN中。
参数内存
++++++++
PaddlePaddle支持非常多的优化算法(Optimizer),不同的优化算法需要使用不同大小的内存。
例如使用 :code:`adadelta` 算法则需要使用等于权重参数规模大约5倍的内存。举例如果参数保存下来的模型目录
文件为 :code:`100M` 那么该优化算法至少需要 :code:`500M` 的内存。
可以考虑使用一些优化算法,例如 :code:`momentum`
2. 如何加速训练速度
-------------------
加速PaddlePaddle训练可以考虑从以下几个方面\
* 减少数据载入的耗时
* 加速训练速度
* 利用分布式训练驾驭更多的计算资源
减少数据载入的耗时
++++++++++++++++++
使用\ :code:`pydataprovider`\ 时,可以减少缓存池的大小,同时设置内存缓存功能,即可以极大的加速数据载入流程。
:code:`DataProvider` 缓存池的减小,和之前减小通过减小缓存池来减小内存占用的原理一致。
.. literalinclude:: src/reduce_min_pool_size.py
同时 :code:`@provider` 接口有一个 :code:`cache` 参数来控制缓存方法,将其设置成 :code:`CacheType.CACHE_PASS_IN_MEM` 的话,会将第一个 :code:`pass` (过完所有训练数据即为一个pass)生成的数据缓存在内存里,在之后的 :code:`pass` 中,不会再从 :code:`python` 端读取数据,而是直接从内存的缓存里读取数据。这也会极大减少数据读入的耗时。
加速训练速度
++++++++++++
PaddlePaddle支持Sparse的训练sparse训练需要训练特征是 :code:`sparse_binary_vector`:code:`sparse_vector` 、或者 :code:`integer_value` 的任一一种。同时与这个训练数据交互的Layer需要将其Parameter设置成 sparse 更新模式,即设置 :code:`sparse_update=True`
这里使用简单的 :code:`word2vec` 训练语言模型距离,具体使用方法为\:
使用一个词前两个词和后两个词来预测这个中间的词。这个任务的DataProvider为\:
.. literalinclude:: src/word2vec_dataprovider.py
这个任务的配置为\:
.. literalinclude:: src/word2vec_config.py
利用更多的计算资源
++++++++++++++++++
利用更多的计算资源可以分为一下几个方式来进行\:
* 单机CPU训练
* 使用多线程训练。设置命令行参数 :code:`trainer_count`
* 单机GPU训练
* 使用显卡训练。设置命令行参数 :code:`use_gpu`
* 使用多块显卡训练。设置命令行参数 :code:`use_gpu`:code:`trainer_count`
* 多机训练
* 请参考 :ref:`cluster_train`
3. 如何指定GPU设备
------------------
例如机器上有4块GPU编号从0开始指定使用2、3号GPU
* 方式1通过 `CUDA_VISIBLE_DEVICES <http://www.acceleware.com/blog/cudavisibledevices-masking-gpus>`_ 环境变量来指定特定的GPU。
.. code-block:: bash
env CUDA_VISIBLE_DEVICES=2,3 paddle train --use_gpu=true --trainer_count=2
* 方式2通过命令行参数 ``--gpu_id`` 指定。
.. code-block:: bash
paddle train --use_gpu=true --trainer_count=2 --gpu_id=2
4. 训练过程中出现 :code:`Floating point exception`, 训练因此退出怎么办?
------------------------------------------------------------------------
Paddle二进制在运行时捕获了浮点数异常只要出现浮点数异常(即训练过程中出现NaN或者Inf),立刻退出。浮点异常通常的原因是浮点数溢出、除零等问题。
主要原因包括两个方面:
* 训练过程中参数或者训练过程中的梯度尺度过大,导致参数累加,乘除等时候,导致了浮点数溢出。
* 模型一直不收敛,发散到了一个数值特别大的地方。
* 训练数据有问题,导致参数收敛到了一些奇异的情况。或者输入数据尺度过大,有些特征的取值达到数百万,这时进行矩阵乘法运算就可能导致浮点数溢出。
这里有两种有效的解决方法:
1. 设置 :code:`gradient_clipping_threshold` 参数,示例代码如下:
.. code-block:: python
optimizer = paddle.optimizer.RMSProp(
learning_rate=1e-3,
gradient_clipping_threshold=10.0,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
具体可以参考 `nmt_without_attention <https://github.com/PaddlePaddle/models/blob/develop/nmt_without_attention/train.py#L35>`_ 示例。
2. 设置 :code:`error_clipping_threshold` 参数,示例代码如下:
.. code-block:: python
decoder_inputs = paddle.layer.fc(
act=paddle.activation.Linear(),
size=decoder_size * 3,
bias_attr=False,
input=[context, current_word],
layer_attr=paddle.attr.ExtraLayerAttribute(
error_clipping_threshold=100.0))
完整代码可以参考示例 `machine translation <https://github.com/PaddlePaddle/book/blob/develop/08.machine_translation/train.py#L66>`_
两种方法的区别:
1. 两者都是对梯度的截断,但截断时机不同,前者在 :code:`optimzier` 更新网络参数时应用;后者在激活函数反向计算时被调用;
2. 截断对象不同:前者截断可学习参数的梯度,后者截断回传给前层的梯度;
除此之外,还可以通过减小学习律或者对数据进行归一化处理来解决这类问题。
5. 如何调用 infer 接口输出多个layer的预测结果
-----------------------------------------------
* 将需要输出的层作为 :code:`paddle.inference.Inference()` 接口的 :code:`output_layer` 参数输入,代码如下:
.. code-block:: python
inferer = paddle.inference.Inference(output_layer=[layer1, layer2], parameters=parameters)
* 指定要输出的字段进行输出。以输出 :code:`value` 字段为例,代码如下:
.. code-block:: python
out = inferer.infer(input=data_batch, field=["value"])
需要注意的是:
* 如果指定了2个layer作为输出层实际上需要的输出结果是两个矩阵
* 假设第一个layer的输出A是一个 N1 * M1 的矩阵,第二个 Layer 的输出B是一个 N2 * M2 的矩阵;
* paddle.v2 默认会将A和B 横向拼接当N1 和 N2 大小不一样时,会报如下的错误:
.. code-block:: python
ValueError: all the input array dimensions except for the concatenation axis must match exactly
多个层的输出矩阵的高度不一致导致拼接失败,这种情况常常发生在:
* 同时输出序列层和非序列层;
* 多个输出层处理多个不同长度的序列;
此时可以在调用infer接口时通过设置 :code:`flatten_result=False` , 跳过“拼接”步骤来解决上面的问题。这时infer接口的返回值是一个python list:
* list 中元素的个数等于网络中输出层的个数;
* list 中每个元素是一个layer的输出结果矩阵类型是numpy的ndarray
* 每一个layer输出矩阵的高度在非序列输入时等于样本数序列输入时等于输入序列中元素的总数宽度等于配置中layer的size

@ -0,0 +1,69 @@
#########
模型配置
#########
.. contents::
1. 出现 :code:`Duplicated layer name` 错误怎么办
--------------------------------------------------
出现该错误的原因一般是用户对不同layer的参数 :code:`name` 设置了相同的取值。遇到该错误时,先找出参数 :code:`name` 取值相同的layer然后将这些layer的参数 :code:`name` 设置为不同的值。
2. :code:`paddle.layer.memory` 的参数 :code:`name` 如何使用
-------------------------------------------------------------
* :code:`paddle.layer.memory` 用于获取特定layer上一时间步的输出该layer是通过参数 :code:`name` 指定,即,:code:`paddle.layer.memory` 会关联参数 :code:`name` 取值相同的layer并将该layer上一时间步的输出作为自身当前时间步的输出。
* PaddlePaddle的所有layer都有唯一的name用户通过参数 :code:`name` 设定当用户没有显式设定时PaddlePaddle会自动设定。而 :code:`paddle.layer.memory` 不是真正的layer其name由参数 :code:`memory_name` 设定当用户没有显式设定时PaddlePaddle会自动设定。:code:`paddle.layer.memory` 的参数 :code:`name` 用于指定其要关联的layer需要用户显式设定。
3. 两种使用 drop_out 的方法有何区别
------------------------------------
* 在PaddlePaddle中使用dropout有两种方式
* 在相应layer的 :code:`layer_atter` 设置 :code:`drop_rate`,以 :code:`paddle.layer.fc` 为例,代码如下:
.. code-block:: python
fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5))
* 使用 :code:`paddle.layer.dropout`,以 :code:`paddle.layer.fc` 为例,代码如下:
.. code-block:: python
fc = paddle.layer.fc(input=input)
drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5)
* :code:`paddle.layer.dropout` 实际上使用了 :code:`paddle.layer.add_to`并在该layer里采用第一种方式设置 :code:`drop_rate` 来使用dropout的。这种方式对内存消耗较大。
* PaddlePaddle在激活函数里实现dropout而不是在layer里实现。
* :code:`paddle.layer.lstmemory`:code:`paddle.layer.grumemory`:code:`paddle.layer.recurrent` 不是通过一般的方式来实现对输出的激活所以不能采用第一种方式在这几个layer里设置 :code:`drop_rate` 来使用dropout。若要对这几个layer使用dropout可采用第二种方式即使用 :code:`paddle.layer.dropout`
4. 不同的 recurrent layer 的区别
----------------------------------
以LSTM为例在PaddlePaddle中包含以下 recurrent layer
* :code:`paddle.layer.lstmemory`
* :code:`paddle.networks.simple_lstm`
* :code:`paddle.networks.lstmemory_group`
* :code:`paddle.networks.bidirectional_lstm`
按照具体实现方式可以归纳为2类
1. 由 recurrent_group 实现的 recurrent layer
* 用户在使用这一类recurrent layer时可以访问由recurrent unit在一个时间步内计算得到的中间值例如hidden states, memory cells等
* 上述的 :code:`paddle.networks.lstmemory_group` 是这一类的 recurrent layer
2. 将recurrent layer作为一个整体来实现
* 用户在使用这一类recurrent layer只能访问它们的输出值
* 上述的 :code:`paddle.networks.lstmemory_group`:code:`paddle.networks.simple_lstm`:code:`paddle.networks.bidirectional_lstm` 属于这一类的实现;
将recurrent layer作为一个整体来实现 能够针对CPU和GPU的计算做更多优化 所以相比于recurrent group的实现方式 第二类 recurrent layer 计算效率更高。 在实际应用中如果用户不需要访问LSTM的中间变量而只需要获得recurrent layer计算的输出我们建议使用第二类实现。
此外关于LSTM, PaddlePaddle中还包含 :code:`paddle.networks.lstmemory_unit` 这一计算单元:
* 不同于上述介绍的recurrent layer , :code:`paddle.networks.lstmemory_unit` 定义了LSTM单元在一个时间步内的计算过程它并不是一个完整的recurrent layer也不能接收序列数据作为输入
* :code:`paddle.networks.lstmemory_unit` 只能在recurrent_group中作为step function使用

@ -0,0 +1,201 @@
#########
参数设置
#########
.. contents::
1. 如何选择SGD算法的学习率
--------------------------
在采用sgd/async_sgd进行训练时一个重要的问题是选择正确的learning_rate。如果learning_rate太大那么训练有可能不收敛如果learning_rate太小那么收敛可能很慢导致训练时间过长。
通常做法是从一个比较大的learning_rate开始试如果不收敛那减少学习率10倍继续试验直到训练收敛为止。那么如何判断训练不收敛呢可以估计出如果模型采用不变的输出最小的cost0是多少。
如果训练过程的的cost明显高于这个常数输出的cost那么我们可以判断为训练不收敛。举一个例子假如我们是三分类问题采用multi-class-cross-entropy作为cost数据中0,1,2三类的比例为 :code:`0.2, 0.5, 0.3` , 那么常数输出所能达到的最小cost是 :code:`-(0.2*log(0.2)+0.5*log(0.5)+0.3*log(0.3))=1.03` 。如果训练一个pass或者更早cost还大于这个数那么可以认为训练不收敛应该降低学习率。
2. 如何设置学习率退火learning rate annealing
------------------------------------------------
在相应的优化算法里设置learning_rate_schedule及相关参数以使用Adam算法为例代码如下
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_decay_a=0.5,
learning_rate_decay_b=0.75,
learning_rate_schedule="poly",)
PaddlePaddle目前支持8种learning_rate_schedule这8种learning_rate_schedule及其对应学习率计算方式如下
* "constant"
lr = learning_rate
* "poly"
lr = learning_rate * pow(1 + learning_rate_decay_a * num_samples_processed, -learning_rate_decay_b)
其中num_samples_processed为已训练样本数下同。
* "caffe_poly"
lr = learning_rate * pow(1.0 - num_samples_processed / learning_rate_decay_a, learning_rate_decay_b)
* "exp"
lr = learning_rate * pow(learning_rate_decay_a, num_samples_processed / learning_rate_decay_b)
* "discexp"
lr = learning_rate * pow(learning_rate_decay_a, floor(num_samples_processed / learning_rate_decay_b))
* "linear"
lr = max(learning_rate - learning_rate_decay_a * num_samples_processed, learning_rate_decay_b)
* "manual"
这是一种按已训练样本数分段取值的学习率退火方法。使用该learning_rate_schedule时用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例代码如下
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_args="1000:1.0,2000:0.9,3000:0.8",)
在该示例中当已训练样本数小于等于1000时学习率为 :code:`1e-3 * 1.0`当已训练样本数大于1000小于等于2000时学习率为 :code:`1e-3 * 0.9`当已训练样本数大于2000时学习率为 :code:`1e-3 * 0.8`
* "pass_manual"
这是一种按已训练pass数分段取值的学习率退火方法。使用该learning_rate_schedule时用户通过参数 :code:`learning_rate_args` 设置学习率衰减因子分段函数,当前的学习率为所设置 :code:`learning_rate` 与当前的衰减因子的乘积。以使用Adam算法为例代码如下
.. code-block:: python
optimizer = paddle.optimizer.Adam(
learning_rate=1e-3,
learning_rate_schedule="manual",
learning_rate_args="1:1.0,2:0.9,3:0.8",)
在该示例中当已训练pass数小于等于1时学习率为 :code:`1e-3 * 1.0`当已训练pass数大于1小于等于2时学习率为 :code:`1e-3 * 0.9`当已训练pass数大于2时学习率为 :code:`1e-3 * 0.8`
3. 如何初始化参数
-----------------
默认情况下PaddlePaddle使用均值0标准差为 :math:`\frac{1}{\sqrt{d}}` 来初始化参数。其中 :math:`d` 为参数矩阵的宽度。这种初始化方式在一般情况下不会产生很差的结果。如果用户想要自定义初始化方式PaddlePaddle目前提供两种参数初始化的方式\:
* 高斯分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_mean=0.0, initial_std=1.0)`
* 均匀分布。将 :code:`param_attr` 设置成 :code:`param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0)`
比如设置一个全连接层的参数初始化方式和bias初始化方式可以使用如下代码。
.. code-block:: python
hidden = fc_layer(input=ipt, param_attr=ParamAttr(initial_max=1.0, initial_min=-1.0),
bias_attr=ParamAttr(initial_mean=1.0, initial_std=0.0))
上述代码将bias全部初始化为1.0, 同时将参数初始化为 :code:`[1.0, -1.0]` 的均匀分布。
4. 如何共享参数
---------------
PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID相同名字的参数会共享参数。设置参数的名字可以使用 :code:`ParamAttr(name="YOUR_PARAM_NAME")` 来设置。更方便的设置方式,是使得要共享的参数使用同样的 :code:`ParamAttr` 对象。
简单的全连接网络,参数共享的配置示例为\:
.. literalinclude:: ../../python/paddle/trainer_config_helpers/tests/configs/shared_fc.py
这里 :code:`hidden_a`:code:`hidden_b` 使用了同样的parameter和bias。并且softmax层的两个输入也使用了同样的参数 :code:`softmax_param`
5. 如何加载预训练参数
------------------------
* 对加载预训练参数的层,设置其参数属性 :code:`is_static=True`使该层的参数在训练过程中保持不变。以embedding层为例代码如下
.. code-block:: python
emb_para = paddle.attr.Param(name='emb', is_static=True)
paddle.layer.embedding(size=word_dim, input=x, param_attr=emb_para)
* 从模型文件将预训练参数载入 :code:`numpy.array`在创建parameters后使用 :code:`parameters.set()` 加载预训练参数。PaddlePaddle保存的模型参数文件前16字节为头信息用户将参数载入 :code:`numpy.array` 时须从第17字节开始。以embedding层为例代码如下
.. code-block:: python
def load_parameter(file_name, h, w):
with open(file_name, 'rb') as f:
f.read(16) # skip header.
return np.fromfile(f, dtype=np.float32).reshape(h, w)
parameters = paddle.parameters.create(my_cost)
parameters.set('emb', load_parameter(emb_param_file, 30000, 256))
6. 存储的参数格式是什么,如何和明文进行相互转化
--------------------------------------------------
PaddlePaddle保存的模型参数文件内容由16字节头信息和网络参数两部分组成。头信息中1~4字节表示PaddlePaddle版本信息请直接填充05~8字节表示每个参数占用的字节数当保存的网络参数为float类型时为4double类型时为89~16字节表示保存的参数总个数。
将PaddlePaddle保存的模型参数还原回明文时可以使用相应数据类型的 :code:`numpy.array` 加载具体网络参数此时可以跳过PaddlePaddle模型参数文件的头信息。若在PaddlePaddle编译时未指定按照double精度编译默认情况下按照float精度计算保存的参数也是float类型。这时在使用 :code:`numpy.array` 时,一般设置 :code:`dtype=float32` 。示例如下:
.. code-block:: python
def read_parameter(fname, width):
s = open(fname).read()
# skip header
vec = np.fromstring(s[16:], dtype=np.float32)
# width is the size of the corresponding layer
np.savetxt(fname + ".csv", vec.reshape(width, -1),
fmt="%.6f", delimiter=",")
将明文参数转化为PaddlePaddle可加载的模型参数时首先构造头信息再写入网络参数。下面的代码将随机生成的矩阵转化为可以被PaddlePaddle加载的模型参数。
.. code-block:: python
def gen_rand_param(param_file, width, height, need_trans):
np.random.seed()
header = struct.pack("iil", 0, 4, height * width)
param = np.float32(np.random.rand(height, width))
with open(param_file, "w") as fparam:
fparam.write(header + param.tostring())
7. A protocol message was rejected because it was too big
------------------------------------------------------------
如果在训练NLP相关模型时出现以下错误
.. code-block:: bash
[libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes). To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr)
可能的原因是传给dataprovider的某一个args过大一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似
.. code-block:: python
src_dict = dict()
for line_count, line in enumerate(open(src_dict_path, "r")):
src_dict[line.strip()] = line_count
define_py_data_sources2(
train_list,
test_list,
module="dataprovider",
obj="process",
args={"src_dict": src_dict})
解决方案是将字典的地址作为args传给dataprovider然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为
.. code-block:: python
define_py_data_sources2(
train_list,
test_list,
module="dataprovider",
obj="process",
args={"src_dict_path": src_dict_path})
完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。

@ -1,14 +1,17 @@
# How to write a new operator
- [Background](#Background)
- [Implementing C++ Types](#Implementing_C++_Types)
- [Defining ProtoMaker](#Defining_ProtoMaker)
- [Defining Operator](#Defining_Operator)
- [Registering Operator](#Registering_Operator)
- [Compilation](#Compilation)
- [Python Binding](#Python_Binding)
- [Unit Tests](#Unit_Tests)
- [Background](#background)
- [Implementing C++ Types](#implementing-c++-types)
- [Defining ProtoMaker](#defining-protoMaker)
- [Defining Operator](#defining-operator)
- [Registering Operator](#registering-operator)
- [Compilation](#compilation)
- [Python Binding](#python-binding)
- [Unit Tests](#unit-tests)
- [Testing Forward Operators](#testing-forward-operators)
- [Testing Backward Operators](#testing-backward-operators)
- [Compiling and Running](#compiling-and-running)
- [Remarks](#remarks)
## Background
Here are the base types needed. For details, please refer to the design docs.
@ -232,4 +235,122 @@ The system will automatically bind to Python and link it to a generated library.
## Unit Tests
Unit tests include comparing a forward operator's implementations on different devices, comparing a backward operator's implementation on different devices, and a scaling test for the backward operator. Here, we introduce the [unit tests for `MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py).
Unit tests for an operator include
1. comparing a forward operator's implementations on different devices,
2. comparing a backward operator's implementation on different devices, and
3. a scaling test for the backward operator.
Here, we introduce the [unit tests for `MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py).
### Testing Forward Operators
A forward operator unit test inherits `unittest.TestCase` and defines metaclass `__metaclass__ = OpTestMeta`. More concrete tests are performed in `OpTestMeta`. Testing a forward operator requires the following:
1. Defining input, output and relevant attributes in `setUp` method.
2. Generating random input data.
3. Implementing the same computation logic in a Python script:
```python
import unittest
import numpy as np
from gradient_checker import GradientChecker, create_op
from op_test_util import OpTestMeta
class TestMulOp(unittest.TestCase):
__metaclass__ = OpTestMeta
def setUp(self):
self.type = "mul"
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])}
```
Get its output, and compare it with the forward operator's own output.
The code above first loads required packages. In addition, we have
- `self.type = "mul" ` defines the type that is identical to what the operator's registered type.
- `self.inputs` defines input, with type `numpy.array` and initializes it.
- `self.outputs` defines output and completes the same operator computation in the Python script, and returns its result from the Python script.
### Testing Backward Operators
A backward operator unit test inherits `GradientChecker`, which inherits `unittest.TestCase`. As a result, **a backward operator unit test needs to be have the prefix `test_`**.
```python
class TestMulGradOp(GradientChecker):
def setUp(self):
self.op = create_op("mul")
self.inputs = {
'X': np.random.random((32, 84)).astype("float32"),
'Y': np.random.random((84, 100)).astype("float32")
}
def test_cpu_gpu_compare(self):
self.compare_grad(self.op, self.inputs)
def test_normal(self):
# mul op will enlarge the relative error
self.check_grad(
self.op, self.inputs, ["X", "Y"], "Out", max_relative_error=0.5)
def test_ignore_x(self):
self.check_grad(
self.op,
self.inputs, ["Y"],
"Out",
max_relative_error=0.5,
no_grad_set={"X"})
def test_ignore_y(self):
self.check_grad(
self.op,
self.inputs, ["X"],
"Out",
max_relative_error=0.5,
no_grad_set={"Y"})
```
Some key points in the code above include:
- `create_op("mul")` creates the backward operator's corresponding forward operator.
- `compare_grad` compares results between utilizing the CPU and the GPU.
- `test_normal` calls `check_grad` to validate scaling tests' correctness and stability through numeric methods.
- The first variable `self.op` denotes the forward operator.
- The second variable `self.inputs` denotes the input dictionary, which has its key value identical to its `ProtoMaker` definitions.
- The third variable `["X", "Y"]` appoints `X` and `Y` to be scale tested.
- The fourth variable `"Out"` points to the network's final output target `Out`.
- `test_ignore_x` and `test_ignore_y`branches test the cases where there is only one scaling input.
### Compiling and Running
Any new unit testing file of the format `test_*.py` added to the director `python/paddle/v2/framework/tests` is automatically added to the project to compile.
Note that **unlike the compile test for Ops, running unit tests requires compiling the entire project** and requires compiling with flag `WITH_TESTING` on i.e. `cmake paddle_dir -DWITH_TESTING=ON`.
After successfully compiling the project, run the following command to run unit tests:
```bash
make test ARGS="-R test_mul_op -V"
```
Or,
```bash
ctest -R test_mul_op
```
## Remarks
- Every `*_op.h` (if applicable), `*_op.cc`, and `*_op.cu` (if applicable) must be created for a unique Op. Compiling will fail if multiple operators are included per file.
- The type with which an operator is registered needs to be identical to the Op's name. Registering `REGISTER_OP(B, ...)` in `A_op.cc` will cause unit testing failures.
- If the operator does not implement a GPU kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail.
- If multiple operators rely on some shared methods, a file NOT named `*_op.*` can be created to store them, such as `gather.h`.

@ -26,7 +26,7 @@ cc_library(operator SRCS operator.cc DEPS op_info device_context tensor scope)
cc_test(operator_test SRCS operator_test.cc DEPS operator op_registry)
cc_library(grad_op_builder SRCS grad_op_builder.cc DEPS operator)
cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker)
cc_library(op_registry SRCS op_registry.cc DEPS grad_op_builder op_proto_maker op_info)
cc_test(op_registry_test SRCS op_registry_test.cc DEPS op_registry)
cc_test(grad_op_builder_test SRCS grad_op_builder_test.cc DEPS grad_op_builder op_registry add_op)

@ -24,6 +24,9 @@ static ProgramDesc* g_program_desc = nullptr;
ProgramDesc& GetProgramDesc() {
if (g_program_desc == nullptr) {
g_program_desc = new ProgramDesc();
auto root_block = g_program_desc->mutable_blocks()->Add();
root_block->set_idx(0);
root_block->set_parent_idx(-1);
}
return *g_program_desc;
}

@ -45,6 +45,21 @@ inline AttrType AttrTypeID() {
Attribute GetAttrValue(const OpDesc::Attr& attr_desc);
class AttrReader {
public:
explicit AttrReader(const AttributeMap& attrs) : attrs_(attrs) {}
template <typename T>
inline const T& Get(const std::string& name) const {
PADDLE_ENFORCE(attrs_.count(name) != 0, "%s should be in AttributeMap",
name);
return boost::get<T>(attrs_.at(name));
}
private:
const AttributeMap& attrs_;
};
// check whether a value(attribute) fit a certain limit
template <typename T>
class GreaterThanChecker {

@ -2,7 +2,7 @@
## Motivation
In Neural Network, many model is solved by the the backpropagation algorithm(known as BP) at present. Technically it caculates the gradient of the loss function, then distributed back through the networks. Follows the chain rule, so we need a module chains the gradient operators/expressions together with to construct the backward pass. Every forward network needs a backward network to construct the full computation graph, the operator/expression's backward pass will be generated respect to forward pass.
In Neural Network, most models are solved by the backpropagation algorithm(known as **BP**) at present. Technically, BP calculates the gradient of the loss function, then propagates it back through the networks following the chain rule. Hence we need a module that chains the gradient operators/expressions together to construct the backward pass. Every forward network needs a backward network to construct the full computation graph. The operator/expression's backward pass will be generated with respect to the forward pass.
## Implementation
@ -24,9 +24,9 @@ A backward network is built up with several backward operators. Backward operato
| **Operator::inputs_** | Inputs | Inputs, Outputs, OutputGradients |
| **Operator::outputs_** | Outputs | InputGradients |
In most cases, there is a one-to-one correspondence between the forward and backward operators. These correspondences are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and make operators pluggable, the registry mechanism is introduced.
In most cases, there is a one-to-one relation between the forward and backward operators. These relations are recorded by a global hash map(`OpInfoMap`). To follow the philosophy of minimum core and to make operators pluggable, the registry mechanism is introduced.
For example, we have got a `mul_op`, and we can register its information and corresponding backward operator by the following macro:
For example, we have `mul_op`, and we can register its information and corresponding backward operator by the following macro:
```cpp
REGISTER_OP(mul, MulOp, MulOpMaker, mul_grad, MulOpGrad);
@ -48,7 +48,7 @@ The function `BuildGradOp` will sequentially execute following processes:
1. Get the `type_` of given forward operator, and then get the corresponding backward operator's type by looking up the `OpInfoMap`.
2. Build two maps named `inputs` and `outputs` to temporary storage backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing.
2. Build two maps named `inputs` and `outputs` to temporarily store backward operator's inputs and outputs. Copy forward operator's `inputs_` and `outputs_` to map `inputs`, except these, are not necessary for gradient computing.
3. Add forward inputs' gradient variables into map `output`, adding forward outputs' gradient variables into map `input`.
@ -56,11 +56,11 @@ The function `BuildGradOp` will sequentially execute following processes:
### Backward Network Building
A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and append them together one by one. There is some corner case need to process specially.
A backward network is a series of backward operators. The main idea of building a backward network is creating backward operators in the inverted sequence and appending them together one by one. There are some corner cases that need special processing.
1. Op
When the input forward network is an Op, return its gradient Operator Immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
When the input forward network is an Op, return its gradient Operator immediately. If all of its outputs are in no gradient set, then return a special `NOP`.
2. NetOp
@ -68,33 +68,33 @@ A backward network is a series of backward operators. The main idea of building
3. RnnOp
RnnOp is a nested stepnet operator. Backward module need to recusively call `Backward` for every stepnet.
RnnOp is a nested stepnet operator. Backward module needs to recusively call `Backward` for every stepnet.
4. Sharing Variables
**sharing variables**. As illustrated in the pictures, two operator's share the same variable name of W@GRAD, which will overwrite their sharing input variable.
As illustrated in the figure 1 and figure 2, two operators share the same variable name **W@GRAD**, which will overwrite their shared input variable.
<p align="center">
<img src="./images/duplicate_op.png" width="50%" ><br/>
pic 1. Sharing variables in operators.
Figure 1. Sharing variables in operators.
</p>
Sharing variable between operators or same input variable used in multiple operators leads to a duplicate gradient variable. As demo show above, we need to rename gradient name recursively and add a generic add operator to replace the overwrite links.
Sharing variable between operators or same input variable used in multiple operators can lead to duplicate gradient variables. As illustrated in figure 2, we need to rename the gradient names recursively and add a generic add operator to prevent overwriting.
<p align="center">
<img src="images/duplicate_op2.png" width="40%" ><br/>
pic 2. Replace sharing variable's gradient with `Add` operator.
Figure 2. Replace sharing variable's gradient with `Add` operator.
</p>
Because our framework finds variables accord to their names, we need to rename the output links. We add a suffix of number to represent its position in clockwise.
Because the framework finds variables according to their names, we need to rename the output links. We add an integer suffix to represent its position in the clockwise direction.
5. Part of Gradient is Zero.
5. Part of the Gradient is Zero.
In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implement, we insert a special `fillZeroLike` operator.
In the whole graph, there is some case of that one operator's gradient is not needed, but its input's gradient is a dependency link of other operator, we need to fill a same shape gradient matrix in the position. In our implementation, we insert a special `fillZeroLike` operator.
Follow these rules above, then collect the sub graph `OutputGradients`/`InputGradients` as the NetOp's and return it.

@ -14,7 +14,7 @@ limitations under the License. */
#include "paddle/framework/operator.h"
#include <algorithm>
#include "paddle/framework/op_registry.h"
#include <atomic>
namespace paddle {
namespace framework {
@ -33,6 +33,24 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
}
#endif
const Tensor* GetTensorFromVar(const Variable* var) {
if (var->IsType<LoDTensor>()) {
return &var->Get<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return &var->Get<Tensor>();
}
Tensor* GetTensorFromVar(Variable* var) {
if (var->IsType<LoDTensor>()) {
return var->GetMutable<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input must be LoDTensor or Tensor.");
return var->GetMutable<Tensor>();
}
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,

@ -24,6 +24,7 @@ limitations under the License. */
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/shape_inference.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/device_context.h"
#include "paddle/platform/place.h"
@ -56,6 +57,9 @@ class OperatorBase;
class InferShapeContext;
class ExecutionContext;
extern const Tensor* GetTensorFromVar(const Variable* var);
extern Tensor* GetTensorFromVar(Variable* var);
/**
* OperatorBase has the basic element that Net will call to do computation.
* Only CreateOperator from OpRegistry will new Operator directly. User
@ -262,15 +266,6 @@ class InferShapeContext {
return res;
}
const Tensor* GetTensorFromVar(const Variable* var) const {
if (var->IsType<LoDTensor>()) {
return &var->Get<LoDTensor>();
}
PADDLE_ENFORCE(var->IsType<Tensor>(),
"The Input(%s) must be LoDTensor or Tensor.");
return &var->Get<Tensor>();
}
void ShareLoD(const std::string& in, const std::string& out, size_t i = 0,
size_t j = 0) const {
PADDLE_ENFORCE_LT(i, InputSize(in));
@ -340,6 +335,78 @@ class ExecutionContext : public InferShapeContext {
const platform::DeviceContext& device_context_;
};
class RuntimeInferShapeContext : public InferShapeContextBase {
public:
RuntimeInferShapeContext(const OperatorBase& op, const Scope& scope)
: op_(op), scope_(scope) {}
bool HasInput(const std::string& name) const {
auto ipt = op_.Input(name);
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
bool HasOutput(const std::string& name) const {
auto ipt = op_.Output(name);
auto* var = ipt == kEmptyVarName ? nullptr : scope_.FindVar(ipt);
return var != nullptr;
}
DDim GetInputDim(const std::string& name) const {
return GetDim(op_.Input(name));
}
void SetInputDim(const std::string& name, const DDim& dim) {
SetDim(op_.Input(name), dim);
}
DDim GetOutputDim(const std::string& name) const {
return GetDim(op_.Output(name));
}
void SetOutputDim(const std::string& name, const DDim& dim) {
SetDim(op_.Output(name), dim);
}
AttrReader Attrs() const { return AttrReader(op_.Attrs()); }
const std::vector<std::string>& Inputs(const std::string& name) const {
return op_.Inputs(name);
}
const std::vector<std::string>& Outputs(const std::string& name) const {
return op_.Outputs(name);
}
private:
template <bool Allocate>
Tensor* GetTensor(const std::string& name) const {
Tensor* t = nullptr;
auto* var = scope_.FindVar(name);
if (!var->IsType<LoDTensor>() && !var->IsType<Tensor>()) {
if (Allocate) {
t = var->GetMutable<LoDTensor>();
} else {
PADDLE_THROW("Variable(%s) should be tensor", name);
}
} else {
t = GetTensorFromVar(scope_.FindVar(name));
}
return t;
}
DDim GetDim(const std::string& name) const {
return GetTensor<false>(name)->dims();
}
void SetDim(const std::string& name, const DDim& dim) {
GetTensor<true>(name)->Resize(dim);
}
const OperatorBase& op_;
const Scope& scope_;
};
class OpKernel {
public:
/**
@ -383,8 +450,10 @@ class OperatorWithKernel : public OperatorBase {
const VariableNameMap& outputs, const AttributeMap& attrs)
: OperatorBase(type, inputs, outputs, attrs) {}
// runtime infershape
void InferShape(const Scope& scope) const override {
InferShape(InferShapeContext(*this, scope));
auto c = RuntimeInferShapeContext(*this, scope);
InferShape(&c);
}
void Run(const Scope& scope,
@ -406,7 +475,7 @@ class OperatorWithKernel : public OperatorBase {
}
protected:
virtual void InferShape(const InferShapeContext& ctx) const = 0;
virtual void InferShape(InferShapeContextBase* ctx) const = 0;
};
} // namespace framework

@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/framework/operator.h"
#include "gtest/gtest.h"
#include "paddle/framework/op_info.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
@ -114,7 +115,7 @@ class OpWithKernelTest : public OperatorWithKernel {
using OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext& ctx) const override {}
void InferShape(framework::InferShapeContextBase* ctx) const override {}
};
template <typename T1, typename T2>

@ -0,0 +1,82 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/ddim.h"
namespace paddle {
namespace framework {
class InferShapeContextBase {
public:
virtual ~InferShapeContextBase() {}
virtual bool HasInput(const std::string &name) const = 0;
virtual bool HasOutput(const std::string &name) const = 0;
virtual framework::DDim GetInputDim(const std::string &name) const = 0;
std::vector<framework::DDim> GetInputsDim(const std::string &name) const {
const std::vector<std::string> &names = Inputs(name);
return GetDims(names);
}
virtual void SetInputDim(const std::string &name,
const framework::DDim &dim) = 0;
void SetInputsDim(const std::string &name,
const std::vector<framework::DDim> &dims) {
auto &names = Inputs(name);
SetDims(names, dims);
}
virtual framework::DDim GetOutputDim(const std::string &name) const = 0;
std::vector<framework::DDim> GetOutputsDim(const std::string &name) const {
const std::vector<std::string> &names = Outputs(name);
return GetDims(names);
}
virtual void SetOutputDim(const std::string &name, const DDim &dim) = 0;
void SetOutputsDim(const std::string &name,
const std::vector<framework::DDim> &dims) {
auto &names = Outputs(name);
SetDims(names, dims);
}
virtual AttrReader Attrs() const = 0;
virtual const std::vector<std::string> &Inputs(
const std::string &name) const = 0;
virtual const std::vector<std::string> &Outputs(
const std::string &name) const = 0;
// TODO(qiao) implement this function
void ShareLoD(const std::string &in, const std::string &out, size_t i = 0,
size_t j = 0) const {}
protected:
virtual framework::DDim GetDim(const std::string &name) const = 0;
virtual void SetDim(const std::string &name, const framework::DDim &dim) = 0;
std::vector<framework::DDim> GetDims(
const std::vector<std::string> &names) const {
std::vector<framework::DDim> ret;
ret.reserve(names.size());
std::transform(
names.begin(), names.end(), std::back_inserter(ret),
[this](const std::string &name) { return this->GetDim(name); });
return ret;
}
void SetDims(const std::vector<std::string> &names,
const std::vector<framework::DDim> &dims) {
size_t length = names.size();
PADDLE_ENFORCE_EQ(length, dims.size());
for (size_t i = 0; i < length; ++i) {
SetDim(names[i], dims[i]);
}
}
};
} // namespace framework
} // namespace paddle

@ -7,7 +7,7 @@ Variable is also known as *blob* in MxNet and Caffe2. It is the input and outpu
For the flexibility of a DL system, a variable should be able to contain any typed value -- a tensor in most cases, but could also be some integer IDs or a scope of other variables in the case of RNN.
To use the minimum amount of memory, we'd like that a variable to allocate memory when it has to, or, lazy memory allocation. Let's take the following example:
To use the minimum amount of memory, we would like that a variable allocates memory only when it has to, or, lazy memory allocation. Let's take the following example:
```cpp
Variable vr, v1, v2;
@ -38,7 +38,7 @@ This syntax for lazy memory allocation when we call `Randomize` and `Mult`, thos
To make memory allocation lazy, we cannot assume that we know the type held by a variable at definition time. In other words, `class Variable` cannot be a template `template <T> class Variable`.
Because we don't know the type `T`, we cannot save a `T*` as `Variable's` data member. Instead, we save an interface object `Placeholder`, who can return the pointer to the saved object via `Placeholder::Ptr()` as `void*`.
Because we don't know the type `T`, we cannot save a `T*` as `Variable's` data member. Instead, we save an interface object `Placeholder`, which can return the pointer to the saved object via `Placeholder::Ptr()` as `void*`.
But anyway, Variable needs to know `T` so could it `delete<T>(ptr)` and so could `Variable::Get` checks the expected type and the saved object's type.
@ -49,4 +49,4 @@ Because `PlaceholderImpl` knows `T`, it can save and return `typeid(T)` for the
## Conclusion
The technique type hiding utilizes C++ class templates, interface and derivation, and C++ RTTI (typeid). This combination saves us from definition something like `caffe2::TypeMata`, which takes hundreds of lines of C++ code.
The technique type hiding utilizes C++ class templates, interface and derivation, and C++ RTTI (typeid). This combination saves us from defining something like `caffe2::TypeMeta`, which takes hundreds of lines of C++ code.

@ -94,10 +94,14 @@ add_subdirectory(math)
set(DEPS_OPS
recurrent_op
cond_op)
cond_op
cross_entropy_op
softmax_with_cross_entropy_op)
op_library(recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS framework_proto tensor net_op)
op_library(cond_op SRCS cond_op.cc DEPS framework_proto tensor operator net_op)
op_library(cross_entropy_op DEPS cross_entropy_function)
op_library(softmax_with_cross_entropy_op DEPS cross_entropy_function softmax_function)
list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})

@ -22,25 +22,23 @@ class AccuracyOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(
ctx.InputVar("Inference"),
"Input(Inference) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Label"),
"Input(Label) of AccuracyOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(
ctx.OutputVar("Accuracy"),
"Output(Accuracy) of AccuracyOp should not be null.");
void InferShape(framework::InferShapeContextBase *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Inference"),
"Input(Inference) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input(Label) of AccuracyOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Accuracy"),
"Output(Accuracy) of AccuracyOp should not be null.");
auto *inference = ctx.Input<framework::Tensor>("Inference");
auto *label = ctx.Input<framework::Tensor>("Label");
auto inference_dim = ctx->GetInputDim("Inference");
auto label_dim = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(label->dims().size(), 1, "label must be a vector");
PADDLE_ENFORCE_EQ(inference->dims()[0], label->dims()[0],
PADDLE_ENFORCE_EQ(label_dim.size(), 1, "label must be a vector");
PADDLE_ENFORCE_EQ(inference_dim[0], label_dim[0],
"inference size must be the same as label size");
ctx.Output<framework::Tensor>("Accuracy")->Resize({1});
ctx.ShareLoD("Inference", /*->*/ "Accuracy");
ctx->SetOutputDim("Accuracy", {1});
ctx->ShareLoD("Inference", /*->*/ "Accuracy");
}
};

@ -22,10 +22,9 @@ class ActivationOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::Tensor>("Y")->Resize(
ctx.Input<framework::Tensor>("X")->dims());
ctx.ShareLoD("X", /*->*/ "Y");
void InferShape(framework::InferShapeContextBase *ctx) const override {
ctx->SetOutputDim("Y", ctx->GetInputDim("X"));
ctx->ShareLoD("X", /*->*/ "Y");
}
};
@ -34,9 +33,8 @@ class ActivationOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
ctx.Output<framework::Tensor>(framework::GradVarName("X"))
->Resize(ctx.Input<framework::Tensor>("Y")->dims());
void InferShape(framework::InferShapeContextBase *ctx) const override {
ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("Y"));
}
};

@ -22,25 +22,23 @@ class AddOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("Y"),
"Input(Y) of AddOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of AddOp should not be null.");
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of AddOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) of AddOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of AddOp should not be null.");
PADDLE_ENFORCE_EQ(ctx.Input<Tensor>("X")->dims(),
ctx.Input<Tensor>("Y")->dims(),
auto x_dims = ctx->GetInputDim("X");
auto y_dims = ctx->GetInputDim("Y");
PADDLE_ENFORCE_EQ(x_dims, y_dims,
"Two input of Add Op's dimension must be same.");
ctx.Output<framework::Tensor>("Out")->Resize(
ctx.Input<Tensor>("X")->dims());
ctx->SetOutputDim("Out", x_dims);
}
};
class AddOpMaker : public framework::OpProtoAndCheckerMaker {
public:
AddOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
AddOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X", "The first input of add op");
AddInput("Y", "The second input of add op");
@ -58,7 +56,7 @@ class AddOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {}
void InferShape(framework::InferShapeContextBase* ctx) const override {}
};
} // namespace operators

@ -22,28 +22,28 @@ class ClipOp : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of ClipOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of ClipOp should not be null.");
auto x_dims = ctx.Input<Tensor>("X")->dims();
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of ClipOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of ClipOp should not be null.");
auto x_dims = ctx->GetInputDim("X");
auto max = Attr<float>("max");
auto min = Attr<float>("min");
PADDLE_ENFORCE_LT(min, max, "max should be greater than min.");
ctx.Output<Tensor>("Out")->Resize(x_dims);
ctx.ShareLoD("X", /*->*/ "Out");
ctx->SetOutputDim("Out", x_dims);
ctx->ShareLoD("X", /*->*/ "Out");
}
};
template <typename AttrType>
class ClipOpMaker : public framework::OpProtoAndCheckerMaker {
public:
ClipOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
ClipOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"(Tensor)The input of clip op."
"The input should be a k-D tensor(k > 0 and k < 7)");
"The number of dimensions must be between [1, 9].");
AddOutput("Out", "(Tensor)The output of clip op with shape as input(X)");
AddAttr<AttrType>(
"min", "(float)Minimum value, under which element is replaced by min.");
@ -61,14 +61,13 @@ class ClipOpGrad : public framework::OperatorWithKernel {
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<Tensor>("X")->dims();
auto *x_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
void InferShape(framework::InferShapeContextBase* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx->GetInputDim("X");
if (ctx->HasOutput(framework::GradVarName("X"))) {
ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
}
}
};

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save