commit
3d1f8b47ef
@ -0,0 +1 @@
|
|||||||
|
.gitignore
|
@ -0,0 +1,69 @@
|
|||||||
|
# Release v0.9.0
|
||||||
|
|
||||||
|
## New Features:
|
||||||
|
|
||||||
|
* New Layers
|
||||||
|
* bilinear interpolation layer.
|
||||||
|
* spatial pyramid-pool layer.
|
||||||
|
* de-convolution layer.
|
||||||
|
* maxout layer.
|
||||||
|
* Support rectangle padding, stride, window and input for Pooling Operation.
|
||||||
|
* Add —job=time in trainer, which can be used to print time info without compiler option -WITH_TIMER=ON.
|
||||||
|
* Expose cost_weight/nce_layer in `trainer_config_helpers`
|
||||||
|
* Add FAQ, concepts, h-rnn docs.
|
||||||
|
* Add Bidi-LSTM and DB-LSTM to quick start demo @alvations
|
||||||
|
* Add usage track scripts.
|
||||||
|
|
||||||
|
## Improvements
|
||||||
|
|
||||||
|
* Add Travis-CI for Mac OS X. Enable swig unittest in Travis-CI. Skip Travis-CI when only docs are changed.
|
||||||
|
* Add code coverage tools.
|
||||||
|
* Refine convolution layer to speedup and reduce GPU memory.
|
||||||
|
* Speed up PyDataProvider2
|
||||||
|
* Add ubuntu deb package build scripts.
|
||||||
|
* Make Paddle use git-flow branching model.
|
||||||
|
* PServer support no parameter blocks.
|
||||||
|
|
||||||
|
## Bug Fixes
|
||||||
|
|
||||||
|
* add zlib link to py_paddle
|
||||||
|
* add input sparse data check for sparse layer at runtime
|
||||||
|
* Bug fix for sparse matrix multiplication
|
||||||
|
* Fix floating-point overflow problem of tanh
|
||||||
|
* Fix some nvcc compile options
|
||||||
|
* Fix a bug in yield dictionary in DataProvider
|
||||||
|
* Fix SRL hang when exit.
|
||||||
|
|
||||||
|
# Release v0.8.0beta.1
|
||||||
|
New features:
|
||||||
|
|
||||||
|
* Mac OSX is supported by source code. #138
|
||||||
|
* Both GPU and CPU versions of PaddlePaddle are supported.
|
||||||
|
|
||||||
|
* Support CUDA 8.0
|
||||||
|
|
||||||
|
* Enhance `PyDataProvider2`
|
||||||
|
* Add dictionary yield format. `PyDataProvider2` can yield a dictionary with key is data_layer's name, value is features.
|
||||||
|
* Add `min_pool_size` to control memory pool in provider.
|
||||||
|
|
||||||
|
* Add `deb` install package & docker image for no_avx machines.
|
||||||
|
* Especially for cloud computing and virtual machines
|
||||||
|
|
||||||
|
* Automatically disable `avx` instructions in cmake when machine's CPU don't support `avx` instructions.
|
||||||
|
|
||||||
|
* Add Parallel NN api in trainer_config_helpers.
|
||||||
|
|
||||||
|
* Add `travis ci` for Github
|
||||||
|
|
||||||
|
Bug fixes:
|
||||||
|
|
||||||
|
* Several bugs in trainer_config_helpers. Also complete the unittest for trainer_config_helpers
|
||||||
|
* Check if PaddlePaddle is installed when unittest.
|
||||||
|
* Fix bugs in GTX series GPU
|
||||||
|
* Fix bug in MultinomialSampler
|
||||||
|
|
||||||
|
Also more documentation was written since last release.
|
||||||
|
|
||||||
|
# Release v0.8.0beta.0
|
||||||
|
|
||||||
|
PaddlePaddle v0.8.0beta.0 release. The install package is not stable yet and it's a pre-release version.
|
@ -0,0 +1,24 @@
|
|||||||
|
# Get the latest git tag.
|
||||||
|
set(PADDLE_VERSION $ENV{PADDLE_VERSION})
|
||||||
|
set(tmp_version "HEAD")
|
||||||
|
while ("${PADDLE_VERSION}" STREQUAL "")
|
||||||
|
execute_process(
|
||||||
|
COMMAND ${GIT_EXECUTABLE} describe --tags --abbrev=0 ${tmp_version}
|
||||||
|
WORKING_DIRECTORY ${PROJ_ROOT}
|
||||||
|
OUTPUT_VARIABLE GIT_TAG_NAME
|
||||||
|
RESULT_VARIABLE GIT_RESULT
|
||||||
|
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
|
||||||
|
if (NOT ${GIT_RESULT})
|
||||||
|
# Check the tag is a correct version
|
||||||
|
if (${GIT_TAG_NAME} MATCHES "v[0-9]+\\.[0-9]+\\.[0-9]+(\\.(a|b|rc)\\.[0-9]+)?")
|
||||||
|
string(REPLACE "v" "" PADDLE_VERSION ${GIT_TAG_NAME})
|
||||||
|
else() # otherwise, get the previous git tag name.
|
||||||
|
set(tmp_version "${GIT_TAG_NAME}~1")
|
||||||
|
endif()
|
||||||
|
else()
|
||||||
|
set(PADDLE_VERSION "0.0.0")
|
||||||
|
message(WARNING "Cannot add paddle version from git tag")
|
||||||
|
endif()
|
||||||
|
endwhile()
|
||||||
|
|
||||||
|
message(STATUS "Paddle version is ${PADDLE_VERSION}")
|
@ -0,0 +1,11 @@
|
|||||||
|
output/
|
||||||
|
uniform_params/
|
||||||
|
cifar_params/
|
||||||
|
mnist_params/
|
||||||
|
*.png
|
||||||
|
.pydevproject
|
||||||
|
.project
|
||||||
|
*.log
|
||||||
|
*.pyc
|
||||||
|
data/mnist_data/
|
||||||
|
data/cifar-10-batches-py/
|
@ -0,0 +1,13 @@
|
|||||||
|
# Generative Adversarial Networks (GAN)
|
||||||
|
|
||||||
|
This demo implements GAN training described in the original GAN paper (https://arxiv.org/abs/1406.2661) and DCGAN (https://arxiv.org/abs/1511.06434).
|
||||||
|
|
||||||
|
The general training procedures are implemented in gan_trainer.py. The neural network configurations are specified in gan_conf.py (for synthetic data) and gan_conf_image.py (for image data).
|
||||||
|
|
||||||
|
In order to run the model, first download the corresponding data by running the shell script in ./data.
|
||||||
|
Then you can run the command below. The flag -d specifies the training data (cifar, mnist or uniform) and flag --useGpu specifies whether to use gpu for training (0 is cpu, 1 is gpu).
|
||||||
|
|
||||||
|
$python gan_trainer.py -d cifar --use_gpu 1
|
||||||
|
|
||||||
|
The generated images will be stored in ./cifar_samples/
|
||||||
|
The corresponding models will be stored in ./cifar_params/
|
@ -0,0 +1,18 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
set -e
|
||||||
|
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
|
||||||
|
tar zxf cifar-10-python.tar.gz
|
||||||
|
rm cifar-10-python.tar.gz
|
||||||
|
|
@ -0,0 +1,19 @@
|
|||||||
|
#!/usr/bin/env sh
|
||||||
|
# This script downloads the mnist data and unzips it.
|
||||||
|
set -e
|
||||||
|
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||||
|
rm -rf "$DIR/mnist_data"
|
||||||
|
mkdir "$DIR/mnist_data"
|
||||||
|
cd "$DIR/mnist_data"
|
||||||
|
|
||||||
|
echo "Downloading..."
|
||||||
|
|
||||||
|
for fname in train-images-idx3-ubyte train-labels-idx1-ubyte t10k-images-idx3-ubyte t10k-labels-idx1-ubyte
|
||||||
|
do
|
||||||
|
if [ ! -e $fname ]; then
|
||||||
|
wget --no-check-certificate http://yann.lecun.com/exdb/mnist/${fname}.gz
|
||||||
|
gunzip ${fname}.gz
|
||||||
|
fi
|
||||||
|
done
|
||||||
|
|
||||||
|
|
@ -0,0 +1,134 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
mode = get_config_arg("mode", str, "generator")
|
||||||
|
assert mode in set(["generator",
|
||||||
|
"discriminator",
|
||||||
|
"generator_training",
|
||||||
|
"discriminator_training"])
|
||||||
|
|
||||||
|
is_generator_training = mode == "generator_training"
|
||||||
|
is_discriminator_training = mode == "discriminator_training"
|
||||||
|
is_generator = mode == "generator"
|
||||||
|
is_discriminator = mode == "discriminator"
|
||||||
|
|
||||||
|
# The network structure below follows the ref https://arxiv.org/abs/1406.2661
|
||||||
|
# Here we used two hidden layers and batch_norm
|
||||||
|
|
||||||
|
print('mode=%s' % mode)
|
||||||
|
# the dim of the noise (z) as the input of the generator network
|
||||||
|
noise_dim = 10
|
||||||
|
# the dim of the hidden layer
|
||||||
|
hidden_dim = 10
|
||||||
|
# the dim of the generated sample
|
||||||
|
sample_dim = 2
|
||||||
|
|
||||||
|
settings(
|
||||||
|
batch_size=128,
|
||||||
|
learning_rate=1e-4,
|
||||||
|
learning_method=AdamOptimizer(beta1=0.5)
|
||||||
|
)
|
||||||
|
|
||||||
|
def discriminator(sample):
|
||||||
|
"""
|
||||||
|
discriminator ouputs the probablity of a sample is from generator
|
||||||
|
or real data.
|
||||||
|
The output has two dimenstional: dimension 0 is the probablity
|
||||||
|
of the sample is from generator and dimension 1 is the probabblity
|
||||||
|
of the sample is from real data.
|
||||||
|
"""
|
||||||
|
param_attr = ParamAttr(is_static=is_generator_training)
|
||||||
|
bias_attr = ParamAttr(is_static=is_generator_training,
|
||||||
|
initial_mean=1.0,
|
||||||
|
initial_std=0)
|
||||||
|
|
||||||
|
hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=ReluActivation())
|
||||||
|
|
||||||
|
hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=LinearActivation())
|
||||||
|
|
||||||
|
hidden_bn = batch_norm_layer(hidden2,
|
||||||
|
act=ReluActivation(),
|
||||||
|
name="dis_hidden_bn",
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=ParamAttr(is_static=is_generator_training,
|
||||||
|
initial_mean=1.0,
|
||||||
|
initial_std=0.02),
|
||||||
|
use_global_stats=False)
|
||||||
|
|
||||||
|
return fc_layer(input=hidden_bn, name="dis_prob", size=2,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=SoftmaxActivation())
|
||||||
|
|
||||||
|
def generator(noise):
|
||||||
|
"""
|
||||||
|
generator generates a sample given noise
|
||||||
|
"""
|
||||||
|
param_attr = ParamAttr(is_static=is_discriminator_training)
|
||||||
|
bias_attr = ParamAttr(is_static=is_discriminator_training,
|
||||||
|
initial_mean=1.0,
|
||||||
|
initial_std=0)
|
||||||
|
|
||||||
|
hidden = fc_layer(input=noise,
|
||||||
|
name="gen_layer_hidden",
|
||||||
|
size=hidden_dim,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=ReluActivation())
|
||||||
|
|
||||||
|
hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=LinearActivation())
|
||||||
|
|
||||||
|
hidden_bn = batch_norm_layer(hidden2,
|
||||||
|
act=ReluActivation(),
|
||||||
|
name="gen_layer_hidden_bn",
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=ParamAttr(is_static=is_discriminator_training,
|
||||||
|
initial_mean=1.0,
|
||||||
|
initial_std=0.02),
|
||||||
|
use_global_stats=False)
|
||||||
|
|
||||||
|
return fc_layer(input=hidden_bn,
|
||||||
|
name="gen_layer1",
|
||||||
|
size=sample_dim,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
param_attr=param_attr,
|
||||||
|
act=LinearActivation())
|
||||||
|
|
||||||
|
if is_generator_training:
|
||||||
|
noise = data_layer(name="noise", size=noise_dim)
|
||||||
|
sample = generator(noise)
|
||||||
|
|
||||||
|
if is_discriminator_training:
|
||||||
|
sample = data_layer(name="sample", size=sample_dim)
|
||||||
|
|
||||||
|
if is_generator_training or is_discriminator_training:
|
||||||
|
label = data_layer(name="label", size=1)
|
||||||
|
prob = discriminator(sample)
|
||||||
|
cost = cross_entropy(input=prob, label=label)
|
||||||
|
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
|
||||||
|
outputs(cost)
|
||||||
|
|
||||||
|
if is_generator:
|
||||||
|
noise = data_layer(name="noise", size=noise_dim)
|
||||||
|
outputs(generator(noise))
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,14 @@
|
|||||||
|
ABOUT
|
||||||
|
=======
|
||||||
|
|
||||||
|
PaddlPaddle is an easy-to-use, efficient, flexible and scalable deep learning platform,
|
||||||
|
which is originally developed by Baidu scientists and engineers for the purpose of applying deep learning to many products at Baidu.
|
||||||
|
|
||||||
|
PaddlePaddle is now open source but far from complete, which is intended to be built upon, improved, scaled, and extended.
|
||||||
|
We hope to build an active open source community both by providing feedback and by actively contributing to the source code.
|
||||||
|
|
||||||
|
|
||||||
|
Credits
|
||||||
|
--------
|
||||||
|
|
||||||
|
We owe many thanks to `all contributors and developers <https://github.com/PaddlePaddle/Paddle/blob/develop/authors>`_ of PaddlePaddle!
|
@ -1,7 +0,0 @@
|
|||||||
Algorithm Tutorial
|
|
||||||
==================
|
|
||||||
|
|
||||||
.. toctree::
|
|
||||||
:maxdepth: 1
|
|
||||||
|
|
||||||
rnn/rnn.rst
|
|
@ -1 +0,0 @@
|
|||||||
../../demo/sentiment_analysis/bi_lstm.jpg
|
|
@ -1 +0,0 @@
|
|||||||
../../demo/text_generation/encoder-decoder-attention-model.png
|
|
@ -1,5 +1,5 @@
|
|||||||
DataProvider Introduction
|
Introduction
|
||||||
=========================
|
==============
|
||||||
DataProvider is a module that loads training or testing data into cpu or gpu
|
DataProvider is a module that loads training or testing data into cpu or gpu
|
||||||
memory for the following triaining or testing process.
|
memory for the following triaining or testing process.
|
||||||
|
|
@ -1,5 +1,5 @@
|
|||||||
How to use PyDataProvider2
|
PyDataProvider2
|
||||||
==========================
|
=================
|
||||||
|
|
||||||
We highly recommand users to use PyDataProvider2 to provide training or testing
|
We highly recommand users to use PyDataProvider2 to provide training or testing
|
||||||
data to PaddlePaddle. The user only needs to focus on how to read a single
|
data to PaddlePaddle. The user only needs to focus on how to read a single
|
@ -0,0 +1,36 @@
|
|||||||
|
API
|
||||||
|
====
|
||||||
|
|
||||||
|
DataProvider API
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
data_provider/index.rst
|
||||||
|
data_provider/pydataprovider2.rst
|
||||||
|
|
||||||
|
Model Config API
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
trainer_config_helpers/index.rst
|
||||||
|
trainer_config_helpers/optimizers.rst
|
||||||
|
trainer_config_helpers/data_sources.rst
|
||||||
|
trainer_config_helpers/layers.rst
|
||||||
|
trainer_config_helpers/activations.rst
|
||||||
|
trainer_config_helpers/poolings.rst
|
||||||
|
trainer_config_helpers/networks.rst
|
||||||
|
trainer_config_helpers/evaluators.rst
|
||||||
|
trainer_config_helpers/attrs.rst
|
||||||
|
|
||||||
|
|
||||||
|
Applications API
|
||||||
|
----------------
|
||||||
|
|
||||||
|
.. toctree::
|
||||||
|
:maxdepth: 1
|
||||||
|
|
||||||
|
predict/swig_py_paddle_en.rst
|
@ -1,5 +1,5 @@
|
|||||||
Python Prediction API
|
Python Prediction
|
||||||
=====================
|
==================
|
||||||
|
|
||||||
PaddlePaddle offers a set of clean prediction interfaces for python with the help of
|
PaddlePaddle offers a set of clean prediction interfaces for python with the help of
|
||||||
SWIG. The main steps of predict values in python are:
|
SWIG. The main steps of predict values in python are:
|
@ -0,0 +1,5 @@
|
|||||||
|
Parameter Attributes
|
||||||
|
=======================
|
||||||
|
|
||||||
|
.. automodule:: paddle.trainer_config_helpers.attrs
|
||||||
|
:members:
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue