Because anakin do NOT use glog, so we revert anakin related change

test=develop
revert-14324-fix_vlog
minqiyang 7 years ago
parent 49710960ef
commit 3da43dcae2

@ -50,7 +50,7 @@ template <typename Target>
bool PaddleInferenceAnakinPredictor<Target>::Init(
const contrib::AnakinConfig &config) {
if (!(graph_.load(config.model_file))) {
VLOG(30) << "fail to load graph from " << config.model_file;
VLOG(3) << "fail to load graph from " << config.model_file;
return false;
}
auto inputs = graph_.get_ins();
@ -76,15 +76,15 @@ bool PaddleInferenceAnakinPredictor<Target>::Run(
std::vector<PaddleTensor> *output_data, int batch_size) {
for (const auto &input : inputs) {
if (input.dtype != PaddleDType::FLOAT32) {
VLOG(30) << "Only support float type inputs. " << input.name
<< "'s type is not float";
VLOG(3) << "Only support float type inputs. " << input.name
<< "'s type is not float";
return false;
}
auto d_tensor_in_p = executor_p_->get_in(input.name);
auto net_shape = d_tensor_in_p->shape();
if (net_shape.size() != input.shape.size()) {
VLOG(30) << " input " << input.name
<< "'s shape size should be equal to that of net";
VLOG(3) << " input " << input.name
<< "'s shape size should be equal to that of net";
return false;
}
int sum = 1;
@ -105,15 +105,15 @@ bool PaddleInferenceAnakinPredictor<Target>::Run(
if (input.lod.size() > 0) {
if (input.lod.size() > 1) {
VLOG(30) << " input lod first dim should <=1, but you set "
<< input.lod.size();
VLOG(3) << " input lod first dim should <=1, but you set "
<< input.lod.size();
return false;
}
std::vector<int> offset(input.lod[0].begin(), input.lod[0].end());
d_tensor_in_p->set_seq_offset(offset);
VLOG(30) << "offset.size(): " << offset.size();
VLOG(3) << "offset.size(): " << offset.size();
for (int i = 0; i < offset.size(); i++) {
VLOG(30) << offset[i];
VLOG(3) << offset[i];
}
}
@ -124,7 +124,7 @@ bool PaddleInferenceAnakinPredictor<Target>::Run(
if (cudaMemcpy(d_data_p, static_cast<float *>(input.data.data()),
d_tensor_in_p->valid_size() * sizeof(float),
cudaMemcpyHostToDevice) != 0) {
VLOG(30) << "copy data from CPU to GPU error";
VLOG(3) << "copy data from CPU to GPU error";
return false;
}
}
@ -141,7 +141,7 @@ bool PaddleInferenceAnakinPredictor<Target>::Run(
#endif
if (output_data->empty()) {
VLOG(30) << "At least one output should be set with tensors' names.";
VLOG(3) << "At least one output should be set with tensors' names.";
return false;
}
for (auto &output : *output_data) {
@ -157,7 +157,7 @@ bool PaddleInferenceAnakinPredictor<Target>::Run(
if (cudaMemcpy(output.data.data(), tensor->mutable_data(),
tensor->valid_size() * sizeof(float),
cudaMemcpyDeviceToHost) != 0) {
VLOG(30) << "copy data from GPU to CPU error";
VLOG(3) << "copy data from GPU to CPU error";
return false;
}
}
@ -181,14 +181,14 @@ anakin::Net<Target, anakin::saber::AK_FLOAT, anakin::Precision::FP32>
template <typename Target>
std::unique_ptr<PaddlePredictor>
PaddleInferenceAnakinPredictor<Target>::Clone() {
VLOG(30) << "Anakin Predictor::clone";
VLOG(3) << "Anakin Predictor::clone";
std::unique_ptr<PaddlePredictor> cls(
new PaddleInferenceAnakinPredictor<Target>());
// construct executer from other graph
auto anakin_predictor_p =
dynamic_cast<PaddleInferenceAnakinPredictor<Target> *>(cls.get());
if (!anakin_predictor_p) {
VLOG(30) << "fail to call Init";
VLOG(3) << "fail to call Init";
return nullptr;
}
anakin_predictor_p->get_executer().init(graph_);
@ -206,10 +206,10 @@ template <>
std::unique_ptr<PaddlePredictor>
CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
const contrib::AnakinConfig &config) {
VLOG(30) << "Anakin Predictor create.";
VLOG(3) << "Anakin Predictor create.";
if (config.target_type == contrib::AnakinConfig::NVGPU) {
#ifdef PADDLE_WITH_CUDA
VLOG(30) << "Anakin Predictor create on [ NVIDIA GPU ].";
VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::NV>(config));
return x;
@ -218,12 +218,12 @@ CreatePaddlePredictor<contrib::AnakinConfig, PaddleEngineKind::kAnakin>(
return nullptr;
#endif
} else if (config.target_type == contrib::AnakinConfig::X86) {
VLOG(30) << "Anakin Predictor create on [ Intel X86 ].";
VLOG(3) << "Anakin Predictor create on [ Intel X86 ].";
std::unique_ptr<PaddlePredictor> x(
new PaddleInferenceAnakinPredictor<anakin::X86>(config));
return x;
} else {
VLOG(30) << "Anakin Predictor create on unknown platform.";
VLOG(3) << "Anakin Predictor create on unknown platform.";
return nullptr;
}
}

@ -217,9 +217,9 @@ void single_test() {
LOG(INFO) << "sequence_length = " << seq_offset[seq_offset.size() - 1];
float* data_o = static_cast<float*>(outputs[0].data.data());
VLOG(30) << "outputs[0].data.length() = " << outputs[0].data.length();
VLOG(3) << "outputs[0].data.length() = " << outputs[0].data.length();
for (size_t j = 0; j < outputs[0].data.length(); ++j) {
VLOG(30) << "output[" << j << "]: " << data_o[j];
VLOG(3) << "output[" << j << "]: " << data_o[j];
}
}
}

Loading…
Cancel
Save