|
|
|
@ -77,6 +77,39 @@ TEST_F(TensorRTEngineTest, add_layer) {
|
|
|
|
|
ASSERT_EQ(y_cpu, x_v * 2 + 3);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
TEST_F(TensorRTEngineTest, add_layer_multi_dim) {
|
|
|
|
|
// Weight in CPU memory.
|
|
|
|
|
// It seems tensorrt FC use col-major: [[1.0, 3.3], [1.1, 4.4]]
|
|
|
|
|
// instead of row-major, which is [[1.0, 1.1], [3.3, 4.4]]
|
|
|
|
|
float raw_weight[4] = {1.0, 1.1, 3.3, 4.4};
|
|
|
|
|
// [1, 2]
|
|
|
|
|
float raw_bias[2] = {1.3, 2.4};
|
|
|
|
|
|
|
|
|
|
TensorRTEngine::Weight weight(nvinfer1::DataType::kFLOAT, raw_weight, 4);
|
|
|
|
|
TensorRTEngine::Weight bias(nvinfer1::DataType::kFLOAT, raw_bias, 2);
|
|
|
|
|
auto* x = engine_->DeclareInput("x", nvinfer1::DataType::kFLOAT,
|
|
|
|
|
nvinfer1::DimsCHW{1, 2, 1});
|
|
|
|
|
auto* fc_layer = TRT_ENGINE_ADD_LAYER(engine_, FullyConnected, *x, 2,
|
|
|
|
|
weight.get(), bias.get());
|
|
|
|
|
PADDLE_ENFORCE(fc_layer != nullptr);
|
|
|
|
|
|
|
|
|
|
engine_->DeclareOutput(fc_layer, 0, "y");
|
|
|
|
|
engine_->FreezeNetwork();
|
|
|
|
|
ASSERT_EQ(engine_->engine()->getNbBindings(), 2);
|
|
|
|
|
|
|
|
|
|
// fill in real data [1.0, 2.0]
|
|
|
|
|
float x_v[2] = {1.0, 2.0};
|
|
|
|
|
engine_->SetInputFromCPU("x", reinterpret_cast<void*>(&x_v),
|
|
|
|
|
2 * sizeof(float));
|
|
|
|
|
engine_->Execute(1);
|
|
|
|
|
|
|
|
|
|
LOG(INFO) << "to get output";
|
|
|
|
|
float y_cpu[2] = {-1., -1.};
|
|
|
|
|
engine_->GetOutputInCPU("y", &y_cpu[0], sizeof(float) * 2);
|
|
|
|
|
ASSERT_EQ(y_cpu[0], 4.5);
|
|
|
|
|
ASSERT_EQ(y_cpu[1], 14.5);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // namespace tensorrt
|
|
|
|
|
} // namespace inference
|
|
|
|
|
} // namespace paddle
|
|
|
|
|