add cast/concat/assign xpu op (#27911)
* addd * add cast_op_xpu, test=kunlun * fix bug for cast_op_xpu,test=kunlun * add concat_op_xpu, test=kunlun * slove conflicts, test=kunlun * fix bug,test=kunlun * add assign_op_xpu, test=kunlun * fix bug,test=kunlun * test=kunlun;test=develop * fix concat bug,test=kunlun * fix check_dygraph set in test_concat_op_xpu.py,test=kunlun * fix error message,test=kunlun Co-authored-by: mapingshuo <mps2012@yeah.net>swt-req
parent
2ed84a679d
commit
3e9568653b
@ -0,0 +1,161 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/assign_op.h"
|
||||
|
||||
#include <string>
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
class OpDesc;
|
||||
class Variable;
|
||||
} // namespace framework
|
||||
namespace imperative {
|
||||
class OpBase;
|
||||
} // namespace imperative
|
||||
namespace platform {
|
||||
struct CPUPlace;
|
||||
struct CUDAPlace;
|
||||
struct float16;
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class AssignOp : public framework::OperatorWithKernel {
|
||||
public:
|
||||
AssignOp(const std::string &type, const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorWithKernel(type, inputs, outputs, attrs) {}
|
||||
|
||||
void InferShape(framework::InferShapeContext *ctx) const override {
|
||||
if (ctx->HasInput("X")) {
|
||||
auto type = ctx->GetInputsVarType("X")[0];
|
||||
if (type == framework::proto::VarType::SELECTED_ROWS ||
|
||||
type == framework::proto::VarType::LOD_TENSOR) {
|
||||
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
||||
if (type == framework::proto::VarType::LOD_TENSOR) {
|
||||
ctx->ShareLoD("X", /*->*/ "Out");
|
||||
}
|
||||
} else if (type == framework::proto::VarType::LOD_TENSOR_ARRAY) {
|
||||
if (ctx->IsRuntime()) {
|
||||
// The runtime output shape is determined in kernel.
|
||||
return;
|
||||
} else {
|
||||
ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
protected:
|
||||
framework::OpKernelType GetKernelTypeForVar(
|
||||
const std::string &var_name, const framework::Tensor &tensor,
|
||||
const framework::OpKernelType &expected_kernel_type) const override {
|
||||
return framework::OpKernelType(expected_kernel_type.data_type_,
|
||||
expected_kernel_type.place_,
|
||||
tensor.layout());
|
||||
}
|
||||
|
||||
framework::OpKernelType GetExpectedKernelType(
|
||||
const framework::ExecutionContext &ctx) const override {
|
||||
const framework::Variable *var = ctx.InputVar("X");
|
||||
if (var->IsType<framework::LoDTensorArray>()) {
|
||||
auto t_arr = var->Get<framework::LoDTensorArray>();
|
||||
// NOTE(liym27): Support an empty tensor array as Input.
|
||||
// And set the kernel type is float.
|
||||
if (t_arr.size() == 0) {
|
||||
return framework::OpKernelType(framework::proto::VarType::FP32,
|
||||
ctx.device_context());
|
||||
}
|
||||
}
|
||||
|
||||
return framework::OpKernelType(
|
||||
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
|
||||
ctx.device_context());
|
||||
}
|
||||
};
|
||||
|
||||
class AssignInferVarType : public framework::VarTypeInference {
|
||||
public:
|
||||
void operator()(framework::InferVarTypeContext *ctx) const override {
|
||||
ctx->SyncTypeAndDataType("X", "Out");
|
||||
}
|
||||
};
|
||||
|
||||
class AssignKernel {
|
||||
public:
|
||||
void operator()(const framework::ExecutionContext &ctx) const {
|
||||
auto *x = ctx.InputVar("X");
|
||||
if (x == nullptr) {
|
||||
return;
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(
|
||||
ctx.HasOutput("Out"), true,
|
||||
platform::errors::NotFound("Output(Out) of assign_op is not found."));
|
||||
auto *out = ctx.OutputVar("Out");
|
||||
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
|
||||
auto &dev_ctx = *pool.Get(ctx.GetPlace());
|
||||
|
||||
framework::VisitVarType(*x, AssignFunctor(out, dev_ctx));
|
||||
}
|
||||
};
|
||||
|
||||
class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
void Make() override {
|
||||
AddInput("X",
|
||||
"(LoDTensor, SelectedRows or LoDTensorArray) The input variable "
|
||||
"could be LoDTensor, SelectedRows or LoDTensorArray.")
|
||||
.AsDispensable();
|
||||
AddOutput("Out",
|
||||
"(LoDTensor, SelectedRows or LoDTensorArray) The type of output "
|
||||
"is the same as input X.");
|
||||
AddComment(R"DOC(Assign Operator
|
||||
|
||||
Out = X, when type in [LoDTensor/SelectedRows/LoDTensorArray]
|
||||
raise error if the type is not listed above.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
class AssignGradMaker : public framework::SingleGradOpMaker<T> {
|
||||
public:
|
||||
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
|
||||
|
||||
protected:
|
||||
void Apply(GradOpPtr<T> op) const override {
|
||||
op->SetType("assign");
|
||||
op->SetInput("X", this->OutputGrad("Out"));
|
||||
op->SetOutput("Out", this->InputGrad("X"));
|
||||
}
|
||||
};
|
||||
|
||||
DECLARE_INPLACE_OP_INFERER(AssignOpInplaceInferer, {"X", "Out"});
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
|
||||
REGISTER_OP_XPU_KERNEL_FUNCTOR(assign, float, ops::AssignKernel, double,
|
||||
ops::AssignKernel, int, ops::AssignKernel,
|
||||
int64_t, ops::AssignKernel, bool,
|
||||
ops::AssignKernel);
|
||||
#endif
|
@ -0,0 +1,69 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
#include "paddle/fluid/operators/cast_op.h"
|
||||
#include <memory>
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename InT>
|
||||
class CastXPUKernel : public framework::OpKernel<InT> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* in = context.Input<framework::Tensor>("X");
|
||||
auto* out = context.Output<framework::Tensor>("Out");
|
||||
auto in_type = static_cast<framework::proto::VarType::Type>(
|
||||
context.Attr<int>("in_dtype"));
|
||||
auto out_type = static_cast<framework::proto::VarType::Type>(
|
||||
context.Attr<int>("out_dtype"));
|
||||
auto* in_data = in->data<InT>();
|
||||
auto numel = in->numel();
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
int r = -1;
|
||||
if (out_type == framework::proto::VarType::FP32) {
|
||||
auto* out_data = out->mutable_data<float>(context.GetPlace());
|
||||
r = xpu::cast<InT, float>(dev_ctx.x_context(), in_data, out_data, numel);
|
||||
} else if (out_type == framework::proto::VarType::INT32) {
|
||||
auto* out_data = out->mutable_data<int>(context.GetPlace());
|
||||
r = xpu::cast<InT, int>(dev_ctx.x_context(), in_data, out_data, numel);
|
||||
} else if (out_type == framework::proto::VarType::INT64) {
|
||||
auto* out_data = out->mutable_data<int64_t>(context.GetPlace());
|
||||
r = xpu::cast<InT, int64_t>(dev_ctx.x_context(), in_data, out_data,
|
||||
numel);
|
||||
} else {
|
||||
PADDLE_THROW(platform::errors::Unavailable("Not supported cast %d -> %d",
|
||||
in_type, out_type));
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External(
|
||||
"XPU API return wrong value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
cast, ops::CastXPUKernel<paddle::platform::XPUDeviceContext, int>,
|
||||
ops::CastXPUKernel<paddle::platform::XPUDeviceContext, float>,
|
||||
ops::CastXPUKernel<paddle::platform::XPUDeviceContext, int64_t>);
|
||||
#endif
|
@ -0,0 +1,185 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/concat_op.h"
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#ifdef PADDLE_WITH_MKLDNN
|
||||
#include <paddle/fluid/platform/mkldnn_helper.h>
|
||||
#endif
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
using Tensor = framework::Tensor;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class ConcatXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||
framework::Tensor* out = ctx.Output<framework::Tensor>("Out");
|
||||
int axis = ctx.Attr<int>("axis");
|
||||
PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
|
||||
"The input should not be null."));
|
||||
PADDLE_ENFORCE_NE(ctx.HasInput("AxisTensor"), true,
|
||||
platform::errors::InvalidArgument(
|
||||
"XPU donot surpport AxisTensor for now"));
|
||||
axis = ComputeAxis(static_cast<int64_t>(axis),
|
||||
static_cast<int64_t>(ins[0]->dims().size()));
|
||||
PADDLE_ENFORCE_GE(
|
||||
axis, 0, platform::errors::InvalidArgument("concat: axis shoud >= 0!"));
|
||||
PADDLE_ENFORCE_LT(axis, ins[0]->dims().size(),
|
||||
platform::errors::InvalidArgument(
|
||||
"concat: axis shoud < ins[0]->dims()!"));
|
||||
auto place = ctx.GetPlace();
|
||||
out->mutable_data<T>(place);
|
||||
std::vector<int> choose_idx;
|
||||
int n = 0;
|
||||
for (unsigned int i = 0; i < ins.size(); ++i) {
|
||||
if (ins[i] && ins[i]->numel() > 0) {
|
||||
choose_idx.push_back(i);
|
||||
n++;
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_LE(n, 8, platform::errors::InvalidArgument(
|
||||
"XPU only surpport at most 8 tensors for now"));
|
||||
PADDLE_ENFORCE_GT(
|
||||
n, 0, platform::errors::InvalidArgument("No tensor need concat?"));
|
||||
int h = 1;
|
||||
int w_except_axis = 1;
|
||||
for (int i = 0; i < axis; ++i) {
|
||||
h *= (ins[choose_idx[0]]->dims())[i];
|
||||
}
|
||||
for (int i = axis + 1; i < ins[0]->dims().size(); ++i) {
|
||||
w_except_axis *= (ins[choose_idx[0]]->dims())[i];
|
||||
}
|
||||
for (int i = 1; i < n; ++i) {
|
||||
int hh = 1;
|
||||
int ww = 1;
|
||||
for (int j = 0; j < axis; ++j) {
|
||||
hh *= (ins[choose_idx[i]]->dims())[j];
|
||||
}
|
||||
for (int j = axis + 1; j < ins[i]->dims().size(); ++j) {
|
||||
ww *= (ins[choose_idx[i]]->dims())[j];
|
||||
}
|
||||
PADDLE_ENFORCE_EQ(hh, h, platform::errors::InvalidArgument(
|
||||
"concat: h should be eual!"));
|
||||
PADDLE_ENFORCE_EQ(ww, w_except_axis,
|
||||
platform::errors::InvalidArgument(
|
||||
"concat: w should be eual except for axis!"));
|
||||
}
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
std::unique_ptr<int[]> in_w_host(new int[n]);
|
||||
std::unique_ptr<const float* []> ptrs(new const float*[n]);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
ptrs[i] = ins[choose_idx[i]]->data<T>();
|
||||
in_w_host[i] = w_except_axis * (ins[choose_idx[i]]->dims())[axis];
|
||||
}
|
||||
int r =
|
||||
xpu::concat<float>(dev_ctx.x_context(), h, (const int*)in_w_host.get(),
|
||||
n, (const float**)ptrs.get(), out->data<T>());
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External(
|
||||
"XPU API return wrong value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
template <typename DeviceContext, typename T>
|
||||
class ConcatGradXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const {
|
||||
auto* out_grad =
|
||||
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
|
||||
auto ins = ctx.MultiInput<framework::LoDTensor>("X");
|
||||
auto out_var_names = ctx.OutputNames(framework::GradVarName("X"));
|
||||
auto outs =
|
||||
ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
|
||||
{
|
||||
auto dx = outs;
|
||||
auto x = ins;
|
||||
for (size_t i = 0; i < dx.size(); ++i) {
|
||||
if (dx[i] != nullptr) {
|
||||
dx[i]->set_lod(x[i]->lod());
|
||||
}
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_NE(ins[0], nullptr, platform::errors::InvalidArgument(
|
||||
"The input should not be null."));
|
||||
auto axis = ctx.Attr<int>("axis");
|
||||
if (ctx.HasInput("AxisTensor")) {
|
||||
auto* axis_tensor = ctx.Input<framework::Tensor>("AxisTensor");
|
||||
axis = GetDataFromTensor<int>(axis_tensor)[0];
|
||||
}
|
||||
axis = ComputeAxis(static_cast<int64_t>(axis),
|
||||
static_cast<int64_t>(ins[0]->dims().size()));
|
||||
// get output tensor that the name is not kEmptyVarName
|
||||
std::vector<framework::Tensor*> outputs;
|
||||
for (size_t j = 0; j < outs.size(); ++j) {
|
||||
if (out_var_names[j] != framework::kEmptyVarName &&
|
||||
outs[j]->numel() != 0UL) {
|
||||
outs[j]->mutable_data<T>(ctx.GetPlace());
|
||||
outputs.push_back(outs[j]);
|
||||
} else {
|
||||
outputs.push_back(nullptr);
|
||||
}
|
||||
}
|
||||
PADDLE_ENFORCE_GE(axis, 0, platform::errors::InvalidArgument(
|
||||
"concat_grad: axis shoud >= 0!"));
|
||||
PADDLE_ENFORCE_LT(axis, out_grad->dims().size(),
|
||||
platform::errors::InvalidArgument(
|
||||
"concat_grad: axis shoud < ins[0]->dims()!"));
|
||||
auto out_grad_stride = framework::stride_numel(out_grad->dims());
|
||||
int n = outputs.size();
|
||||
PADDLE_ENFORCE_LE(n, 16,
|
||||
platform::errors::InvalidArgument(
|
||||
"XPU only surpport at most 16 tensors for now"));
|
||||
int h = out_grad_stride[0] / out_grad_stride[axis];
|
||||
auto& dev_ctx = ctx.template device_context<DeviceContext>();
|
||||
std::unique_ptr<int[]> in_w_host(new int[n]);
|
||||
std::unique_ptr<float* []> ptrs(new float*[n]);
|
||||
for (int i = 0; i < n; ++i) {
|
||||
auto out_stride = framework::stride_numel(outputs[i]->dims());
|
||||
ptrs[i] = outputs[i]->data<T>();
|
||||
in_w_host[i] = out_stride[axis];
|
||||
}
|
||||
int r = xpu::concat_grad(dev_ctx.x_context(), h, in_w_host.get(), n,
|
||||
reinterpret_cast<float**>(ptrs.get()),
|
||||
out_grad->data<T>());
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External(
|
||||
"XPU API return wrong value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
concat, ops::ConcatXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
concat_grad,
|
||||
ops::ConcatGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif
|
@ -0,0 +1,97 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
|
||||
sys.path.append("..")
|
||||
import op_test
|
||||
import numpy as np
|
||||
import unittest
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
from paddle.fluid.backward import append_backward
|
||||
|
||||
|
||||
class TestAssignOp(op_test.OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "assign"
|
||||
x = np.random.random(size=(100, 10)).astype('float32')
|
||||
self.inputs = {'X': x}
|
||||
self.outputs = {'Out': x}
|
||||
|
||||
def test_forward(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_backward(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['X'], 'Out')
|
||||
|
||||
|
||||
class TestAssignOpWithLoDTensorArray(unittest.TestCase):
|
||||
def test_assign_LoDTensorArray(self):
|
||||
main_program = Program()
|
||||
startup_program = Program()
|
||||
with program_guard(main_program):
|
||||
x = fluid.data(name='x', shape=[100, 10], dtype='float32')
|
||||
x.stop_gradient = False
|
||||
y = fluid.layers.fill_constant(
|
||||
shape=[100, 10], dtype='float32', value=1)
|
||||
z = fluid.layers.elementwise_add(x=x, y=y)
|
||||
i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
|
||||
init_array = fluid.layers.array_write(x=z, i=i)
|
||||
array = fluid.layers.assign(init_array)
|
||||
sums = fluid.layers.array_read(array=init_array, i=i)
|
||||
mean = fluid.layers.mean(sums)
|
||||
append_backward(mean)
|
||||
|
||||
place = fluid.CUDAPlace(0) if core.is_compiled_with_cuda(
|
||||
) else fluid.CPUPlace()
|
||||
exe = fluid.Executor(place)
|
||||
feed_x = np.random.random(size=(100, 10)).astype('float32')
|
||||
ones = np.ones((100, 10)).astype('float32')
|
||||
feed_add = feed_x + ones
|
||||
res = exe.run(main_program,
|
||||
feed={'x': feed_x},
|
||||
fetch_list=[sums.name, x.grad_name])
|
||||
self.assertTrue(np.allclose(res[0], feed_add))
|
||||
self.assertTrue(np.allclose(res[1], ones / 1000.0))
|
||||
|
||||
|
||||
class TestAssignOpError(unittest.TestCase):
|
||||
def test_errors(self):
|
||||
with program_guard(Program(), Program()):
|
||||
# The type of input must be Variable or numpy.ndarray.
|
||||
x1 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
|
||||
self.assertRaises(TypeError, fluid.layers.assign, x1)
|
||||
# When the type of input is Variable, the dtype of input must be float16, float32, float64, int32, int64, bool.
|
||||
x3 = fluid.layers.data(name='x3', shape=[4], dtype="uint8")
|
||||
self.assertRaises(TypeError, fluid.layers.assign, x3)
|
||||
# When the type of input is numpy.ndarray, the dtype of input must be float32, int32.
|
||||
x4 = np.array([[2.5, 2.5]], dtype='float64')
|
||||
self.assertRaises(TypeError, fluid.layers.assign, x4)
|
||||
x5 = np.array([[2.5, 2.5]], dtype='uint8')
|
||||
self.assertRaises(TypeError, fluid.layers.assign, x5)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
unittest.main()
|
@ -0,0 +1,106 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
|
||||
sys.path.append("..")
|
||||
import op_test
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard
|
||||
|
||||
|
||||
class TestCastOp1(op_test.OpTest):
|
||||
def setUp(self):
|
||||
ipt = np.random.random(size=[10, 10])
|
||||
self.inputs = {'X': ipt.astype('float32')}
|
||||
self.outputs = {'Out': ipt.astype('float32')}
|
||||
self.attrs = {
|
||||
'in_dtype': int(core.VarDesc.VarType.FP32),
|
||||
'out_dtype': int(core.VarDesc.VarType.FP32)
|
||||
}
|
||||
self.op_type = 'cast'
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['X'], ['Out'])
|
||||
|
||||
|
||||
class TestCastOp2(op_test.OpTest):
|
||||
def setUp(self):
|
||||
ipt = np.random.random(size=[10, 10])
|
||||
self.inputs = {'X': ipt.astype('float32')}
|
||||
self.outputs = {'Out': ipt.astype('float32')}
|
||||
self.attrs = {
|
||||
'in_dtype': int(core.VarDesc.VarType.FP32),
|
||||
'out_dtype': int(core.VarDesc.VarType.FP32)
|
||||
}
|
||||
self.op_type = 'cast'
|
||||
|
||||
def test_check_output(self):
|
||||
#self.check_output(atol=1e-3)
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place, atol=1e-3)
|
||||
|
||||
|
||||
class TestCastOp3(op_test.OpTest):
|
||||
def setUp(self):
|
||||
ipt = np.random.random(size=[10, 10])
|
||||
self.inputs = {'X': ipt.astype('float32')}
|
||||
self.outputs = {'Out': ipt.astype('float32')}
|
||||
self.attrs = {
|
||||
'in_dtype': int(core.VarDesc.VarType.FP32),
|
||||
'out_dtype': int(core.VarDesc.VarType.FP32)
|
||||
}
|
||||
self.op_type = 'cast'
|
||||
|
||||
def test_check_output(self):
|
||||
#self.check_output(atol=1e-3)
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place, atol=1e-3)
|
||||
|
||||
|
||||
class TestCastOpError(unittest.TestCase):
|
||||
def test_errors(self):
|
||||
with program_guard(Program(), Program()):
|
||||
# The input type of cast_op must be Variable.
|
||||
x1 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
|
||||
self.assertRaises(TypeError, fluid.layers.cast, x1, 'int32')
|
||||
# The input dtype of cast_op must be float32, int32, int64.
|
||||
x2 = fluid.layers.data(name='x2', shape=[4], dtype='int16')
|
||||
self.assertRaises(TypeError, fluid.layers.cast, x2, 'int32')
|
||||
|
||||
def test_dtype_type():
|
||||
x4 = fluid.layers.data(name='x4', shape=[4], dtype='int32')
|
||||
output = fluid.layers.cast(x=x4, dtype='int16')
|
||||
|
||||
self.assertRaises(TypeError, test_dtype_type)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
unittest.main()
|
@ -0,0 +1,240 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
|
||||
sys.path.append("..")
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest, skip_check_grad_ci
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import compiler, Program, program_guard, core
|
||||
import paddle
|
||||
|
||||
|
||||
class TestConcatOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "concat"
|
||||
self.dtype = self.get_dtype()
|
||||
self.init_test_data()
|
||||
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
|
||||
self.attrs = {'axis': self.axis}
|
||||
if self.axis < 0:
|
||||
self.actual_axis = self.axis + len(self.x0.shape)
|
||||
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
|
||||
else:
|
||||
self.actual_axis = self.axis
|
||||
|
||||
self.outputs = {
|
||||
'Out': np.concatenate(
|
||||
(self.x0, self.x1, self.x2), axis=self.actual_axis)
|
||||
}
|
||||
|
||||
def get_dtype(self):
|
||||
return "float64"
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['x0'], 'Out')
|
||||
self.check_grad_with_place(place, ['x1'], 'Out')
|
||||
self.check_grad_with_place(place, ['x2'], 'Out')
|
||||
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
|
||||
self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
|
||||
self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
|
||||
self.axis = 1
|
||||
|
||||
|
||||
class TestConcatOp2(TestConcatOp):
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
|
||||
self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
|
||||
self.x2 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
|
||||
self.axis = 1
|
||||
|
||||
|
||||
@skip_check_grad_ci(
|
||||
reason="The function 'check_grad' for large inputs is too slow.")
|
||||
class TestConcatOp3(TestConcatOp):
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random((1, 256, 170, 256)).astype(self.dtype)
|
||||
self.x1 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
|
||||
self.x2 = np.random.random((1, 128, 170, 256)).astype(self.dtype)
|
||||
self.axis = 1
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
|
||||
@skip_check_grad_ci(
|
||||
reason="This test will meet fetch error when there is a null grad. The detailed information is in PR#17015."
|
||||
)
|
||||
class TestConcatOp4(TestConcatOp):
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
|
||||
self.x1 = np.random.random((2, 3, 4, 5)).astype(self.dtype)
|
||||
self.x2 = np.random.random((0, 3, 4, 5)).astype(self.dtype)
|
||||
self.axis = 0
|
||||
|
||||
def test_check_grad(self):
|
||||
pass
|
||||
|
||||
|
||||
class TestConcatOp5(TestConcatOp):
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random((5, 1, 4, 5)).astype(self.dtype)
|
||||
self.x1 = np.random.random((5, 2, 4, 5)).astype(self.dtype)
|
||||
self.x2 = np.random.random((5, 3, 4, 5)).astype(self.dtype)
|
||||
self.axis = -3
|
||||
|
||||
|
||||
class TestConcatOp6(TestConcatOp):
|
||||
def setUp(self):
|
||||
self.op_type = "concat"
|
||||
self.dtype = self.get_dtype()
|
||||
self.init_test_data()
|
||||
self.lod = [[20, 80]]
|
||||
self.out_lod = [[20, 80, 20, 80, 20, 80]]
|
||||
self.inputs = {
|
||||
'X': [('x0', (self.x0, self.lod)), ('x1', (self.x1, self.lod)),
|
||||
('x2', (self.x2, self.lod))]
|
||||
}
|
||||
self.attrs = {'axis': self.axis}
|
||||
if self.axis < 0:
|
||||
self.actual_axis = self.axis + len(self.x0.shape)
|
||||
self.actual_axis = self.actual_axis if self.actual_axis > 0 else 0
|
||||
else:
|
||||
self.actual_axis = self.axis
|
||||
out = np.concatenate((self.x0, self.x1, self.x2), axis=self.actual_axis)
|
||||
self.outputs = {'Out': (out, self.out_lod)}
|
||||
|
||||
def test_check_output(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_output_with_place(place)
|
||||
|
||||
def test_check_grad(self):
|
||||
if paddle.is_compiled_with_xpu():
|
||||
place = paddle.XPUPlace(0)
|
||||
self.check_grad_with_place(place, ['x0'], 'Out')
|
||||
self.check_grad_with_place(place, ['x1'], 'Out')
|
||||
self.check_grad_with_place(place, ['x2'], 'Out')
|
||||
|
||||
def init_test_data(self):
|
||||
self.x0 = np.random.random([100]).astype(self.dtype)
|
||||
self.x1 = np.random.random([100]).astype(self.dtype)
|
||||
self.x2 = np.random.random([100]).astype(self.dtype)
|
||||
self.axis = 0
|
||||
|
||||
|
||||
class TestConcatOpError(unittest.TestCase):
|
||||
def test_errors(self):
|
||||
with program_guard(Program(), Program()):
|
||||
# The input type of concat_op should be list.
|
||||
x1 = fluid.layers.data(shape=[4], dtype='int32', name='x1')
|
||||
fluid.layers.concat(x1)
|
||||
# The item in input must be Variable.
|
||||
x2 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
||||
x3 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.CPUPlace())
|
||||
self.assertRaises(TypeError, fluid.layers.concat, [x2])
|
||||
# The input dtype of concat_op must be float16, float32, float64, int32, int64.
|
||||
x4 = fluid.layers.data(shape=[4], dtype='uint8', name='x4')
|
||||
x5 = fluid.layers.data(shape=[4], dtype='uint8', name='x5')
|
||||
self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
|
||||
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
|
||||
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
|
||||
x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
|
||||
fluid.layers.concat([x6, x7])
|
||||
|
||||
# The type of axis in concat_op should be int or Variable.
|
||||
def test_axis_type():
|
||||
fluid.layers.concat([x6, x7], 3.2)
|
||||
|
||||
self.assertRaises(TypeError, test_axis_type)
|
||||
|
||||
def test_input_same_dtype():
|
||||
fluid.layers.concat([x7, x8])
|
||||
|
||||
self.assertRaises(TypeError, test_input_same_dtype)
|
||||
|
||||
|
||||
class TestConcatAPI(unittest.TestCase):
|
||||
def test_fluid_api(self):
|
||||
x_1 = fluid.data(shape=[None, 1, 4, 5], dtype='float32', name='x_1')
|
||||
fluid.layers.concat([x_1, x_1], 0)
|
||||
|
||||
input_2 = np.random.random([2, 1, 4, 5]).astype("float32")
|
||||
input_3 = np.random.random([2, 2, 4, 5]).astype("float32")
|
||||
x_2 = fluid.data(shape=[2, 1, 4, 5], dtype='float32', name='x_2')
|
||||
x_3 = fluid.data(shape=[2, 2, 4, 5], dtype='float32', name='x_3')
|
||||
positive_1_int32 = fluid.layers.fill_constant([1], "float32", 1)
|
||||
positive_1_int64 = fluid.layers.fill_constant([1], "float32", 1)
|
||||
out_1 = fluid.layers.concat(input=[x_2, x_3], axis=1)
|
||||
out_2 = fluid.layers.concat(input=[x_2, x_3], axis=1)
|
||||
out_3 = fluid.layers.concat(input=[x_2, x_3], axis=1)
|
||||
|
||||
exe = fluid.Executor(place=fluid.XPUPlace(0))
|
||||
[res_1, res_2, res_3] = exe.run(
|
||||
fluid.default_main_program(),
|
||||
feed={"x_1": input_2,
|
||||
"x_2": input_2,
|
||||
"x_3": input_3},
|
||||
fetch_list=[out_1, out_2, out_3])
|
||||
assert np.array_equal(res_1, np.concatenate((input_2, input_3), axis=1))
|
||||
assert np.array_equal(res_2, np.concatenate((input_2, input_3), axis=1))
|
||||
assert np.array_equal(res_3, np.concatenate((input_2, input_3), axis=1))
|
||||
|
||||
def test_errors(self):
|
||||
with program_guard(Program(), Program()):
|
||||
# The item in input must be Variable.
|
||||
x2 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
|
||||
x3 = fluid.create_lod_tensor(
|
||||
np.array([[-1]]), [[1]], fluid.XPUPlace(0))
|
||||
self.assertRaises(TypeError, paddle.concat, [x2])
|
||||
# The input dtype of concat_op must be float32.
|
||||
x4 = fluid.data(shape=[4], dtype='uint8', name='x4')
|
||||
x5 = fluid.data(shape=[4], dtype='uint8', name='x5')
|
||||
self.assertRaises(TypeError, fluid.layers.concat, [x4, x5])
|
||||
|
||||
# The type of axis in concat_op should be int or Variable.
|
||||
x6 = fluid.layers.data(shape=[4], dtype='float16', name='x6')
|
||||
x7 = fluid.layers.data(shape=[4], dtype='float16', name='x7')
|
||||
x8 = fluid.layers.data(shape=[4], dtype='float32', name='x8')
|
||||
|
||||
def test_axis_type():
|
||||
paddle.concat([x6, x7], 3.2)
|
||||
|
||||
self.assertRaises(TypeError, test_axis_type)
|
||||
|
||||
def test_input_same_dtype():
|
||||
paddle.concat([x7, x8])
|
||||
|
||||
self.assertRaises(TypeError, test_input_same_dtype)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.enable_static()
|
||||
unittest.main()
|
Loading…
Reference in new issue