parent
31464f3425
commit
3f6fc10b9f
@ -0,0 +1,144 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/framework/data_type.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
#include "paddle/fluid/operators/math/math_function.h"
|
||||||
|
#include "paddle/fluid/platform/device_context.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class UniformRandomTableInferShape : public framework::InferShapeBase {
|
||||||
|
public:
|
||||||
|
void operator()(framework::InferShapeContext *ctx) const override {
|
||||||
|
VLOG(3) << "Infershape...";
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("Out"),
|
||||||
|
"Output(Out) of UniformRandomTableOp should not be null.");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(
|
||||||
|
ctx->Attrs().Get<float>("min") < ctx->Attrs().Get<float>("max"),
|
||||||
|
"uniform_random's min must less then max");
|
||||||
|
auto &shape = ctx->Attrs().Get<std::vector<int>>("shape");
|
||||||
|
std::vector<int64_t> temp;
|
||||||
|
temp.reserve(shape.size());
|
||||||
|
for (auto dim : shape) {
|
||||||
|
temp.push_back(static_cast<int64_t>(dim));
|
||||||
|
}
|
||||||
|
ctx->SetOutputDim("Out", framework::make_ddim(temp));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class UniformRandomTableOp : public framework::OperatorBase {
|
||||||
|
public:
|
||||||
|
using framework::OperatorBase::OperatorBase;
|
||||||
|
|
||||||
|
private:
|
||||||
|
void RunImpl(const framework::Scope &scope,
|
||||||
|
const platform::Place &dev_place) const override {
|
||||||
|
VLOG(3) << "RunImpl...";
|
||||||
|
auto out =
|
||||||
|
scope.FindVar(Output("Out"))->GetMutable<framework::SelectedRows>();
|
||||||
|
auto shard_cnt = Attr<int>("shard_cnt");
|
||||||
|
auto shard_id = Attr<int>("shard_id");
|
||||||
|
auto max_id = Attr<int>("max_id");
|
||||||
|
auto shape = Attr<std::vector<int>>("shape");
|
||||||
|
|
||||||
|
auto tensor = out->mutable_value();
|
||||||
|
tensor->Resize(framework::make_ddim(shape));
|
||||||
|
// Only allocate the memory of large table on CPU
|
||||||
|
auto cpu = platform::CPUPlace();
|
||||||
|
float *data = tensor->mutable_data<float>(cpu);
|
||||||
|
VLOG(3) << "generate seed";
|
||||||
|
unsigned int seed = static_cast<unsigned int>(Attr<int>("seed"));
|
||||||
|
std::minstd_rand engine;
|
||||||
|
if (seed == 0) {
|
||||||
|
seed = std::random_device()();
|
||||||
|
}
|
||||||
|
engine.seed(seed);
|
||||||
|
std::uniform_real_distribution<float> dist(Attr<float>("min"),
|
||||||
|
Attr<float>("max"));
|
||||||
|
int64_t size = tensor->numel();
|
||||||
|
for (int64_t i = 0; i < size; ++i) {
|
||||||
|
data[i] = dist(engine);
|
||||||
|
}
|
||||||
|
// initialize rows by round-robin
|
||||||
|
// TODO(Yancey1989): need to support other way to distribute Ids
|
||||||
|
VLOG(3) << "calculate rows_size...";
|
||||||
|
int64_t rows_size = 0;
|
||||||
|
if (max_id % shard_cnt == 0) {
|
||||||
|
rows_size = max_id / shard_cnt;
|
||||||
|
} else {
|
||||||
|
rows_size = max_id / shard_cnt + 1;
|
||||||
|
}
|
||||||
|
auto *rows = out->mutable_rows();
|
||||||
|
rows->resize(rows_size);
|
||||||
|
(*rows)[0] = shard_id;
|
||||||
|
for (int64_t idx = 1; idx < rows_size; ++idx) {
|
||||||
|
(*rows)[idx] = (*rows)[idx - 1] + shard_cnt;
|
||||||
|
}
|
||||||
|
out->set_height(max_id);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class UniformRandomTableOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
UniformRandomTableOpMaker(OpProto *proto, OpAttrChecker *op_checker)
|
||||||
|
: framework::OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddOutput("Out",
|
||||||
|
"(SelectedRows)"
|
||||||
|
"The output table of uniform random table op.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Uniform random operator for initializing a table.
|
||||||
|
|
||||||
|
This operator initializes a SelectedRows with random values sampled from a
|
||||||
|
uniform distribution.
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
AddAttr<int>("max_id",
|
||||||
|
"(int, required)"
|
||||||
|
"The maximal Id for the table.");
|
||||||
|
AddAttr<int>("shard_cnt",
|
||||||
|
"(int, required)"
|
||||||
|
"The count of shards for distributing the table.");
|
||||||
|
AddAttr<int>("shard_id", "(int, required) The current shard ID.");
|
||||||
|
AddAttr<std::vector<int>>("shape",
|
||||||
|
"(vector<int>) The shape of the output tensor");
|
||||||
|
AddAttr<float>("min",
|
||||||
|
"(float, default -1.0) "
|
||||||
|
"Minimum value of uniform random")
|
||||||
|
.SetDefault(-1.0f);
|
||||||
|
AddAttr<float>("max",
|
||||||
|
"(float, default 1.0) "
|
||||||
|
"Maximun value of uniform random")
|
||||||
|
.SetDefault(1.0f);
|
||||||
|
AddAttr<int>("seed",
|
||||||
|
"(int, default 0) "
|
||||||
|
"Random seed used for generating samples. "
|
||||||
|
"0 means use a seed generated by the system."
|
||||||
|
"Note that if seed is not 0, this operator will always "
|
||||||
|
"generate the same random numbers every time.")
|
||||||
|
.SetDefault(0);
|
||||||
|
AddAttr<int>("dtype", "(int, default 5(FP32)) Output tensor data type")
|
||||||
|
.SetDefault(framework::proto::VarType::FP32);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OPERATOR(uniform_random_table, ops::UniformRandomTableOp,
|
||||||
|
ops::UniformRandomTableInferShape,
|
||||||
|
ops::UniformRandomTableOpMaker,
|
||||||
|
paddle::framework::EmptyGradOpMaker);
|
@ -0,0 +1,66 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
import paddle.fluid.core as core
|
||||||
|
from paddle.fluid.op import Operator
|
||||||
|
|
||||||
|
|
||||||
|
def output_hist(out):
|
||||||
|
hist, _ = np.histogram(out, range=(-5, 10))
|
||||||
|
hist = hist.astype("float32")
|
||||||
|
hist /= float(out.size)
|
||||||
|
prob = 0.1 * np.ones((10))
|
||||||
|
return hist, prob
|
||||||
|
|
||||||
|
|
||||||
|
class TestUniformRandomTableOp(unittest.TestCase):
|
||||||
|
def get_places(self):
|
||||||
|
places = [core.CPUPlace()]
|
||||||
|
if core.is_compiled_with_cuda():
|
||||||
|
places.append(core.CUDAPlace(0))
|
||||||
|
return places
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
for place in self.get_places():
|
||||||
|
self.check_with_place(place)
|
||||||
|
|
||||||
|
def check_with_place(self, place):
|
||||||
|
scope = core.Scope()
|
||||||
|
out = scope.var("X").get_selected_rows()
|
||||||
|
|
||||||
|
op = Operator(
|
||||||
|
"uniform_random_table",
|
||||||
|
Out="X",
|
||||||
|
shape=[4, 784],
|
||||||
|
min=-5.0,
|
||||||
|
max=10.0,
|
||||||
|
seed=10,
|
||||||
|
shard_cnt=3,
|
||||||
|
shard_id=1,
|
||||||
|
max_id=10)
|
||||||
|
op.run(scope, place)
|
||||||
|
self.assertEqual(out.rows(), [1, 4, 7, 10])
|
||||||
|
self.assertEqual(out.height(), 10)
|
||||||
|
self.assertEqual(out.get_tensor().shape(), [4, 784])
|
||||||
|
hist, prob = output_hist(np.array(out.get_tensor()))
|
||||||
|
self.assertTrue(
|
||||||
|
np.allclose(
|
||||||
|
hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue