parent
953c79caec
commit
40f68b1349
@ -0,0 +1,146 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import os
|
||||
import signal
|
||||
import time
|
||||
import unittest
|
||||
from multiprocessing import Process
|
||||
|
||||
import numpy as np
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.op import Operator
|
||||
from paddle.fluid.framework import Program, program_guard
|
||||
|
||||
|
||||
def run_pserver(use_cuda, sync_mode):
|
||||
scope = fluid.core.Scope()
|
||||
program = Program()
|
||||
with fluid.scope_guard(scope):
|
||||
with program_guard(program, startup_program=Program()):
|
||||
# create table parameter in scope
|
||||
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||||
# create and initialize Param Variable
|
||||
param = scope.var('table').get_tensor()
|
||||
param_array = np.full((10, 8), 5.0).astype("float32")
|
||||
param.set(param_array, place)
|
||||
|
||||
optimize_block = program._create_block(program.global_block().idx)
|
||||
program.global_block().append_op(
|
||||
type="listen_and_serv",
|
||||
inputs={'X': []},
|
||||
outputs={},
|
||||
attrs={
|
||||
"optimize_blocks": [optimize_block],
|
||||
"endpoint": '127.0.0.1:0',
|
||||
"Fanin": 1,
|
||||
"sync_mode": True,
|
||||
"grad_to_block_id": []
|
||||
})
|
||||
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(program)
|
||||
|
||||
|
||||
class TestListenAndServOp(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.ps_timeout = 5
|
||||
|
||||
def _start_pserver(self, use_cuda, sync_mode, pserver_func):
|
||||
p = Process(target=pserver_func, args=(use_cuda, sync_mode))
|
||||
p.daemon = True
|
||||
p.start()
|
||||
return p
|
||||
|
||||
def _wait_ps_ready(self, pid):
|
||||
start_left_time = self.ps_timeout
|
||||
sleep_time = 0.5
|
||||
while True:
|
||||
assert start_left_time >= 0, "wait ps ready failed"
|
||||
time.sleep(sleep_time)
|
||||
try:
|
||||
# the listen_and_serv_op would touch a file which contains the listen port
|
||||
# on the /tmp directory until it was ready to process all the RPC call.
|
||||
os.stat("/tmp/paddle.%d.port" % pid)
|
||||
return
|
||||
except os.error:
|
||||
start_left_time -= sleep_time
|
||||
|
||||
def _get_pserver_port(self, pid):
|
||||
with open("/tmp/paddle.%d.port" % pid, 'r') as f:
|
||||
port = int(f.read().strip())
|
||||
return port
|
||||
|
||||
def _run_lookup_table_op(self, place, port):
|
||||
scope = fluid.core.Scope()
|
||||
program = Program()
|
||||
with fluid.scope_guard(scope):
|
||||
with program_guard(program, startup_program=Program()):
|
||||
# create and initialize Param Variable
|
||||
param = scope.var('W').get_tensor()
|
||||
param_array = np.full((10, 8), 1.0).astype("float32")
|
||||
param.set(param_array, place)
|
||||
|
||||
ids = scope.var('Ids').get_tensor()
|
||||
ids_array = np.array([[1.0], [2.0]]).astype("int64")
|
||||
ids.set(ids_array, place)
|
||||
ids.set_lod([[0, 1, 2]])
|
||||
|
||||
out = scope.var('Out').get_tensor()
|
||||
|
||||
emaps = ['127.0.0.1:' + str(port)]
|
||||
table_names = ['table']
|
||||
height_sections = [10]
|
||||
# create and run sgd operator
|
||||
lookup_table_op = Operator(
|
||||
"lookup_table",
|
||||
W='W',
|
||||
Ids='Ids',
|
||||
Out='Out',
|
||||
remote_prefetch=True,
|
||||
epmap=emaps,
|
||||
table_names=table_names,
|
||||
height_sections=height_sections)
|
||||
lookup_table_op.run(scope, place)
|
||||
|
||||
# get and compare result
|
||||
result_array = np.array(out)
|
||||
|
||||
print(result_array)
|
||||
|
||||
self.assertTrue((result_array[0] == 5).all())
|
||||
self.assertTrue((result_array[0] == 5).all())
|
||||
|
||||
def test_lookup_remote_table(self):
|
||||
# run pserver on CPU in sync mode
|
||||
p1 = self._start_pserver(False, True, run_pserver)
|
||||
self._wait_ps_ready(p1.pid)
|
||||
port = self._get_pserver_port(p1.pid)
|
||||
|
||||
places = [core.CPUPlace()]
|
||||
# if core.is_compiled_with_cuda():
|
||||
# places.append(core.CUDAPlace(0))
|
||||
for place in places:
|
||||
self._run_lookup_table_op(place, port)
|
||||
|
||||
# raise SIGTERM to pserver
|
||||
os.kill(p1.pid, signal.SIGINT)
|
||||
p1.join()
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue