parent
5c0178b0f2
commit
411e234808
@ -0,0 +1,7 @@
|
|||||||
|
run by:
|
||||||
|
cd ./data
|
||||||
|
sh get_data.sh
|
||||||
|
cd ..
|
||||||
|
sh train.sh
|
||||||
|
sh predict.sh
|
||||||
|
|
@ -0,0 +1,34 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
set -e
|
||||||
|
set -x
|
||||||
|
|
||||||
|
DIR="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||||
|
cd $DIR
|
||||||
|
|
||||||
|
#download the dataset
|
||||||
|
echo "Downloading traffic data..."
|
||||||
|
wget http://paddlepaddle.bj.bcebos.com/demo/traffic/traffic_data.tar.gz
|
||||||
|
|
||||||
|
#extract package
|
||||||
|
echo "Unzipping..."
|
||||||
|
tar -zxvf traffic_data.tar.gz
|
||||||
|
|
||||||
|
echo "data/speeds.csv" >> train.list
|
||||||
|
echo "data/speeds.csv" >> test.list
|
||||||
|
echo "data/speeds.csv" >> pred.list
|
||||||
|
|
||||||
|
echo "Done."
|
@ -0,0 +1,77 @@
|
|||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from paddle.trainer.PyDataProvider2 import *
|
||||||
|
import sys
|
||||||
|
import numpy as np
|
||||||
|
TERM_NUM = 24
|
||||||
|
FORECASTING_NUM = 25
|
||||||
|
LABEL_VALUE_NUM = 4
|
||||||
|
def initHook(settings, file_list, **kwargs):
|
||||||
|
"""
|
||||||
|
Init hook is invoked before process data. It will set obj.slots and store data meta.
|
||||||
|
|
||||||
|
:param settings: global object. It will passed to process routine.
|
||||||
|
:type obj: object
|
||||||
|
:param file_list: the meta file object, which passed from trainer_config.py,but unused in this function.
|
||||||
|
:param kwargs: unused other arguments.
|
||||||
|
"""
|
||||||
|
del kwargs #unused
|
||||||
|
|
||||||
|
settings.pool_size = sys.maxint
|
||||||
|
#Use a time seires of the past as feature.
|
||||||
|
#Dense_vector's expression form is [float,float,...,float]
|
||||||
|
settings.slots = [dense_vector(TERM_NUM)]
|
||||||
|
#There are next FORECASTING_NUM fragments you need predict.
|
||||||
|
#Every predicted condition at time point has four states.
|
||||||
|
for i in range(FORECASTING_NUM):
|
||||||
|
settings.slots.append(integer_value(LABEL_VALUE_NUM))
|
||||||
|
|
||||||
|
@provider(init_hook=initHook, cache=CacheType.CACHE_PASS_IN_MEM, should_shuffle=True)
|
||||||
|
def process(settings, file_name):
|
||||||
|
with open(file_name) as f:
|
||||||
|
#abandon fields name
|
||||||
|
f.next()
|
||||||
|
for row_num, line in enumerate(f):
|
||||||
|
speeds = map(int,line.rstrip('\r\n').split(",")[1:])
|
||||||
|
# Get the max index.
|
||||||
|
end_time = len(speeds)
|
||||||
|
# Scanning and generating samples
|
||||||
|
for i in range(TERM_NUM,end_time - FORECASTING_NUM):
|
||||||
|
# For dense slot
|
||||||
|
pre_spd = map(float,speeds[i-TERM_NUM:i])
|
||||||
|
|
||||||
|
# Integer value need predicting, values start from 0, so every one minus 1.
|
||||||
|
fol_spd = [i-1 for i in speeds[i:i + FORECASTING_NUM]]
|
||||||
|
|
||||||
|
# Predicting label is missing, abandon the sample.
|
||||||
|
if -1 in fol_spd:
|
||||||
|
continue
|
||||||
|
yield [pre_spd] + fol_spd
|
||||||
|
|
||||||
|
def predict_initHook(settings, file_list, **kwargs):
|
||||||
|
settings.pool_size = sys.maxint
|
||||||
|
settings.slots = [dense_vector(TERM_NUM)]
|
||||||
|
|
||||||
|
@provider(init_hook=predict_initHook,should_shuffle=False)
|
||||||
|
def process_predict(settings, file_name):
|
||||||
|
with open(file_name) as f:
|
||||||
|
#abandon fields name
|
||||||
|
f.next()
|
||||||
|
for row_num, line in enumerate(f):
|
||||||
|
speeds = map(int,line.rstrip('\r\n').split(","))
|
||||||
|
end_time = len(speeds)
|
||||||
|
pre_spd = map(float,speeds[end_time-TERM_NUM:end_time])
|
||||||
|
yield pre_spd
|
||||||
|
|
@ -0,0 +1,47 @@
|
|||||||
|
res = []
|
||||||
|
with open('./rank-00000') as f:
|
||||||
|
for line in f:
|
||||||
|
pred = map(int,line.strip('\r\n;').split(";"))
|
||||||
|
#raw prediction range from 0 to 3
|
||||||
|
res.append([i+1 for i in pred])
|
||||||
|
|
||||||
|
file_name = open('./data/pred.list').read().strip('\r\n')
|
||||||
|
|
||||||
|
FORECASTING_NUM=24
|
||||||
|
header=['id',
|
||||||
|
'201604200805',
|
||||||
|
'201604200810',
|
||||||
|
'201604200815',
|
||||||
|
'201604200820',
|
||||||
|
'201604200825',
|
||||||
|
'201604200830',
|
||||||
|
'201604200835',
|
||||||
|
'201604200840',
|
||||||
|
'201604200845',
|
||||||
|
'201604200850',
|
||||||
|
'201604200855',
|
||||||
|
'201604200900',
|
||||||
|
'201604200905',
|
||||||
|
'201604200910',
|
||||||
|
'201604200915',
|
||||||
|
'201604200920',
|
||||||
|
'201604200925',
|
||||||
|
'201604200930',
|
||||||
|
'201604200935',
|
||||||
|
'201604200940',
|
||||||
|
'201604200945',
|
||||||
|
'201604200950',
|
||||||
|
'201604200955',
|
||||||
|
'201604201000',
|
||||||
|
]
|
||||||
|
###################
|
||||||
|
## To CSV format ##
|
||||||
|
###################
|
||||||
|
with open(file_name) as f:
|
||||||
|
f.next()
|
||||||
|
print ','.join(header)
|
||||||
|
for row_num, line in enumerate(f):
|
||||||
|
fields = line.rstrip('\r\n').split(',')
|
||||||
|
linkid = fields[0]
|
||||||
|
print linkid+','+','.join(map(str,res[row_num]))
|
||||||
|
|
@ -0,0 +1,30 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
set -e
|
||||||
|
|
||||||
|
cfg=trainer_config.py
|
||||||
|
# pass choice
|
||||||
|
model="output/pass-00000"
|
||||||
|
paddle train \
|
||||||
|
--config=$cfg \
|
||||||
|
--use_gpu=false \
|
||||||
|
--job=test \
|
||||||
|
--init_model_path=$model \
|
||||||
|
--config_args=is_predict=1 \
|
||||||
|
--predict_output_dir=.
|
||||||
|
|
||||||
|
python gen_result.py > result.txt
|
||||||
|
|
||||||
|
rm -rf rank-00000
|
@ -0,0 +1,30 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
set -e
|
||||||
|
|
||||||
|
cfg=trainer_config.py
|
||||||
|
#TRAINER_BIN="./paddle_trainer"
|
||||||
|
paddle train \
|
||||||
|
--config=$cfg \
|
||||||
|
--save_dir=./output \
|
||||||
|
--trainer_count=4 \
|
||||||
|
--log_period=1000 \
|
||||||
|
--dot_period=10 \
|
||||||
|
--num_passes=10 \
|
||||||
|
--use_gpu=false \
|
||||||
|
--show_parameter_stats_period=3000 \
|
||||||
|
--test_wait=1
|
||||||
|
#--test_all_data_in_one_period=1 \
|
||||||
|
2>&1 | tee 'train.log'
|
@ -0,0 +1,43 @@
|
|||||||
|
#!/usr/bin/env/python
|
||||||
|
#-*python-*-
|
||||||
|
from paddle.trainer_config_helpers import *
|
||||||
|
|
||||||
|
|
||||||
|
################################### DATA Configuration #############################################
|
||||||
|
is_predict = get_config_arg('is_predict', bool, False)
|
||||||
|
trn = './data/train.list' if not is_predict else None
|
||||||
|
tst = './data/test.list' if not is_predict else './data/pred.list'
|
||||||
|
process = 'process' if not is_predict else 'process_predict'
|
||||||
|
define_py_data_sources2(train_list=trn,
|
||||||
|
test_list=tst,
|
||||||
|
module="dataprovider",
|
||||||
|
obj=process)
|
||||||
|
################################### Parameter Configuaration #######################################
|
||||||
|
TERM_NUM=24
|
||||||
|
FORECASTING_NUM= 25
|
||||||
|
emb_size=16
|
||||||
|
batch_size=128 if not is_predict else 1
|
||||||
|
settings(
|
||||||
|
batch_size = batch_size,
|
||||||
|
learning_rate = 1e-3,
|
||||||
|
learning_method = RMSPropOptimizer()
|
||||||
|
)
|
||||||
|
################################### Algorithm Configuration ########################################
|
||||||
|
|
||||||
|
output_label = []
|
||||||
|
|
||||||
|
link_encode = data_layer(name='link_encode', size=TERM_NUM)
|
||||||
|
for i in xrange(FORECASTING_NUM):
|
||||||
|
# Each task share same weight.
|
||||||
|
link_param = ParamAttr(name='_link_vec.w', initial_max=1.0, initial_min=-1.0)
|
||||||
|
link_vec = fc_layer(input=link_encode,size=emb_size, param_attr=link_param)
|
||||||
|
score = fc_layer(input=link_vec, size=4, act=SoftmaxActivation())
|
||||||
|
if is_predict:
|
||||||
|
maxid = maxid_layer(score)
|
||||||
|
output_label.append(maxid)
|
||||||
|
else:
|
||||||
|
# Multi-task training.
|
||||||
|
label = data_layer(name='label_%dmin'%((i+1)*5), size=4)
|
||||||
|
cls = classification_cost(input=score,name="cost_%dmin"%((i+1)*5), label=label)
|
||||||
|
output_label.append(cls)
|
||||||
|
outputs(output_label)
|
Loading…
Reference in new issue