AsyncExecutor (#14627)
* AsyncExecutor: C++ side * Google naming conventions * Rename MultiExecutor to AsyncExecutor * pybind with async_executor * Naming convention * remove some flags and unused code * add refactored file of async_executor and data_feed * clear async executor interface and add data feed factory * split async executor into executor_thread_worker and async_executor, refactor pybind, add datafeed and corresponding proto * Fix async_executor interfaces: 1) Remove all protobufs; 2) Stop after each epoch * refine async_executor_refactor.cc * add some files about datafeed * Revert "add some files about datafeed" This reverts commit 8ee8133ab841196925a2812b76f18d2812a6701d. * Interface rework * add MultiSlotDataFeed * Creating DataFeedDesc from .proto file, then manipulate it (add/del fields etc) from python side * update data_feed for add MultiSlotDataFeed * update datafeed and async_executor to run bow_net demo * fix bug that finish_set_filelist failed in multithread * delete finish_binding_memory_(flag), because it can not be marked under the current interface * Fix bug * update async_executor.py for support set_use_slots * update async_executor.py for support set_use_slots and set set_dense_slots * fix bug that when the number of files is less than the number of threads, it will fetch nan * remove redundant code, and make executor exit when set a illegal queue size * add batch_size check * add MultiSlotDesc * Revert "add MultiSlotDesc" This reverts commit 2e72ebfad364ed6b5dcc75f38ffb2a1fdec83d8e. * add some checkpoint in DataFeedDesc * add CheckFile function in MultiSlotDataFeed * update something error info * fix deaded lock bug * Fix fetch variable * Merge error * fix code style in async_executor * using one lock blocking queue replace two lock blocking queue because of some bugs * update code style * add utest for data_feed * Fix fetch var * update utest for data_feed for multithread * update SetFileList info * fix bug in utest of data_feed * Add comments for python * Add comments for python code * Fix pybind.cc with new pybind11 version * add note for DataFeedDesc's set_use_slots function * Add save_model * update data_feed_test for multi-type * add comment for executor_thread_worker * Remove unused code * update data_feed_test for generate test data file * removed unnecessary interfaces and add comments * c++ style check * update data_feed.cc * AsyncExecutor: C++ side Google naming conventions Rename MultiExecutor to AsyncExecutor pybind with async_executor Naming convention remove some flags and unused code add refactored file of async_executor and data_feed clear async executor interface and add data feed factory split async executor into executor_thread_worker and async_executor, refactor pybind, add datafeed and corresponding proto Fix async_executor interfaces: 1) Remove all protobufs; 2) Stop after each epoch refine async_executor_refactor.cc add some files about datafeed Revert "add some files about datafeed" This reverts commit 8ee8133ab841196925a2812b76f18d2812a6701d. add MultiSlotDataFeed Interface rework Creating DataFeedDesc from .proto file, then manipulate it (add/del fields etc) from python side update datafeed and async_executor to run bow_net demo update async_executor.py for support set_use_slots Fix bug update async_executor.py for support set_use_slots and set set_dense_slots fix bug that when the number of files is less than the number of threads, it will fetch nan remove redundant code, and make executor exit when set a illegal queue size add MultiSlotDesc Revert "add MultiSlotDesc" This reverts commit 2e72ebfad364ed6b5dcc75f38ffb2a1fdec83d8e. add some checkpoint in DataFeedDesc Fix fetch variable fix code style in async_executor Fix fetch var add utest for data_feed Add comments for python update utest for data_feed for multithread fix bug in utest of data_feed Add comments for python code Fix pybind.cc with new pybind11 version add note for DataFeedDesc's set_use_slots function update data_feed_test for multi-type Add save_model update data_feed_test for generate test data file removed unnecessary interfaces and add comments add comment for executor_thread_worker Remove unused code update data_feed.cc c++ style check * commit for code style * commit for code style * commit for code style * commit for code style * Comment away __init__ in async_executor.py * clang-format fix test=develop * use PADDLE_THROW instead of exit(-1); use unique_ptr to manage scope var in data_feed_test.cc * commit for update code style * commit for update code style * Add async_executor demo; Remove some methods test=develop * commit for update code style * commit for update code style * commit for update code style * update API.spec * AsyncExecutor test=develop * AsyncExecutor test=develop * AsyncExecutor test=develop * AsyncExecutor test=develop * Fix API.spec test=develop * Fix API.spec test=develop * Fix windows build error test=develop * FIx windows build error test=develop * FIx windows build error test=develop * FIx windows build error test=develop * Fix Windows Build test=develop * Fix Windows Build test=develop * Fix Windows Build test=develop * Fix code style test=develop * Fix code style test=develop * update datafeed * Fix code style test=develop * update data_feed_test for test Tensor test=develop * Fix code style test=develop * Fix windows build failure test=develop * Fix code style and windows build failure test=develop * Fix PYTHON3.5 build failure test=develop * AsyncExecutor API test=developf7c96f079b
parent
78738d6c86
commit
41e19eb431
@ -0,0 +1,138 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/async_executor.h"
|
||||
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
||||
#include "google/protobuf/message.h"
|
||||
#include "google/protobuf/text_format.h"
|
||||
|
||||
#include "gflags/gflags.h"
|
||||
#include "paddle/fluid/framework/data_feed_factory.h"
|
||||
#include "paddle/fluid/framework/executor_thread_worker.h"
|
||||
#include "paddle/fluid/framework/feed_fetch_method.h"
|
||||
#include "paddle/fluid/framework/feed_fetch_type.h"
|
||||
#include "paddle/fluid/framework/lod_rank_table.h"
|
||||
#include "paddle/fluid/framework/lod_tensor_array.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/reader.h"
|
||||
#include "paddle/fluid/inference/io.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
#include "paddle/fluid/pybind/pybind.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
AsyncExecutor::AsyncExecutor(Scope* scope, const platform::Place& place)
|
||||
: root_scope_(scope), place_(place) {}
|
||||
|
||||
void AsyncExecutor::CreateThreads(
|
||||
ExecutorThreadWorker* worker, const ProgramDesc& main_program,
|
||||
const std::shared_ptr<DataFeed>& reader,
|
||||
const std::vector<std::string>& fetch_var_names, Scope* root_scope,
|
||||
const int thread_index, const bool debug) {
|
||||
worker->SetThreadId(thread_index);
|
||||
worker->SetDebug(debug);
|
||||
worker->SetRootScope(root_scope);
|
||||
worker->CreateThreadResource(main_program, place_);
|
||||
worker->SetDataFeed(reader);
|
||||
worker->SetFetchVarNames(fetch_var_names);
|
||||
worker->BindingDataFeedMemory();
|
||||
}
|
||||
|
||||
void PrepareReaders(std::vector<std::shared_ptr<DataFeed>>& readers, // NOLINT
|
||||
const int thread_num, const DataFeedDesc& data_feed_desc,
|
||||
const std::vector<std::string>& filelist) {
|
||||
readers.resize(thread_num);
|
||||
for (size_t i = 0; i < readers.size(); ++i) {
|
||||
readers[i] = DataFeedFactory::CreateDataFeed(data_feed_desc.name());
|
||||
readers[i]->Init(data_feed_desc); // set batch_size and queue_size here
|
||||
}
|
||||
readers[0]->SetFileList(filelist);
|
||||
}
|
||||
|
||||
void AsyncExecutor::RunFromFile(const ProgramDesc& main_program,
|
||||
const std::string& data_feed_desc_str,
|
||||
const std::vector<std::string>& filelist,
|
||||
const int thread_num,
|
||||
const std::vector<std::string>& fetch_var_names,
|
||||
const bool debug) {
|
||||
std::vector<std::thread> threads;
|
||||
|
||||
auto& block = main_program.Block(0);
|
||||
for (auto var_name : fetch_var_names) {
|
||||
auto var_desc = block.FindVar(var_name);
|
||||
auto shapes = var_desc->GetShape();
|
||||
PADDLE_ENFORCE(shapes[shapes.size() - 1] == 1,
|
||||
"var %s: Fetched var has wrong shape, "
|
||||
"only variables with the last dimension size 1 supported",
|
||||
var_name);
|
||||
}
|
||||
|
||||
DataFeedDesc data_feed_desc;
|
||||
google::protobuf::TextFormat::ParseFromString(data_feed_desc_str,
|
||||
&data_feed_desc);
|
||||
|
||||
int actual_thread_num = thread_num;
|
||||
int file_cnt = filelist.size();
|
||||
PADDLE_ENFORCE(file_cnt > 0, "File list cannot be empty");
|
||||
|
||||
if (actual_thread_num > file_cnt) {
|
||||
VLOG(1) << "Thread num = " << thread_num << ", file num = " << file_cnt
|
||||
<< ". Changing thread_num = " << file_cnt;
|
||||
actual_thread_num = file_cnt;
|
||||
}
|
||||
|
||||
/*
|
||||
readerDesc: protobuf description for reader initlization
|
||||
argument: class_name, batch_size, use_slot, queue_size, buffer_size,
|
||||
padding_index
|
||||
|
||||
reader:
|
||||
1) each thread has a reader, reader will read input data and
|
||||
put it into input queue
|
||||
2) each reader has a Next() iterface, that can fetch an instance
|
||||
from the input queue
|
||||
*/
|
||||
// todo: should be factory method for creating datafeed
|
||||
std::vector<std::shared_ptr<DataFeed>> readers;
|
||||
PrepareReaders(readers, actual_thread_num, data_feed_desc, filelist);
|
||||
|
||||
std::vector<std::shared_ptr<ExecutorThreadWorker>> workers;
|
||||
workers.resize(actual_thread_num);
|
||||
for (auto& worker : workers) {
|
||||
worker.reset(new ExecutorThreadWorker);
|
||||
}
|
||||
|
||||
// prepare thread resource here
|
||||
for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
|
||||
CreateThreads(workers[thidx].get(), main_program, readers[thidx],
|
||||
fetch_var_names, root_scope_, thidx, debug);
|
||||
}
|
||||
|
||||
// start executing ops in multiple threads
|
||||
for (int thidx = 0; thidx < actual_thread_num; ++thidx) {
|
||||
threads.push_back(
|
||||
std::thread(&ExecutorThreadWorker::TrainFiles, workers[thidx].get()));
|
||||
}
|
||||
|
||||
for (auto& th : threads) {
|
||||
th.join();
|
||||
}
|
||||
|
||||
root_scope_->DropKids();
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
} // einit_modelnd namespace framework
|
||||
} // end namespace paddle
|
@ -0,0 +1,58 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex> // NOLINT
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <thread> // NOLINT
|
||||
#include <typeinfo>
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/data_feed.pb.h"
|
||||
#include "paddle/fluid/framework/executor.h"
|
||||
#include "paddle/fluid/framework/executor_thread_worker.h"
|
||||
#include "paddle/fluid/framework/program_desc.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
class AsyncExecutor {
|
||||
public:
|
||||
AsyncExecutor(Scope* scope, const platform::Place& place);
|
||||
virtual ~AsyncExecutor() {}
|
||||
void RunFromFile(const ProgramDesc& main_program,
|
||||
const std::string& data_feed_desc_str,
|
||||
const std::vector<std::string>& filelist,
|
||||
const int thread_num,
|
||||
const std::vector<std::string>& fetch_names,
|
||||
const bool debug = false);
|
||||
|
||||
private:
|
||||
void CreateThreads(ExecutorThreadWorker* worker,
|
||||
const ProgramDesc& main_program,
|
||||
const std::shared_ptr<DataFeed>& reader,
|
||||
const std::vector<std::string>& fetch_var_names,
|
||||
Scope* root_scope, const int thread_index,
|
||||
const bool debug);
|
||||
|
||||
public:
|
||||
Scope* root_scope_;
|
||||
platform::Place place_;
|
||||
};
|
||||
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,30 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
syntax = "proto2";
|
||||
package paddle.framework;
|
||||
|
||||
message Slot {
|
||||
required string name = 1;
|
||||
required string type = 2;
|
||||
optional bool is_dense = 3 [ default = false ];
|
||||
optional bool is_used = 4 [ default = false ];
|
||||
}
|
||||
|
||||
message MultiSlotDesc { repeated Slot slots = 1; }
|
||||
|
||||
message DataFeedDesc {
|
||||
optional string name = 1;
|
||||
optional int32 batch_size = 2 [ default = 32 ];
|
||||
optional MultiSlotDesc multi_slot_desc = 3;
|
||||
}
|
@ -0,0 +1,64 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/data_feed_factory.h"
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include <unordered_map>
|
||||
|
||||
#include "paddle/fluid/framework/data_feed.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
typedef std::shared_ptr<DataFeed> (*Createdata_feedFunction)();
|
||||
typedef std::unordered_map<std::string, Createdata_feedFunction> data_feedMap;
|
||||
data_feedMap g_data_feed_map;
|
||||
|
||||
#define REGISTER_DATAFEED_CLASS(data_feed_class) \
|
||||
namespace { \
|
||||
std::shared_ptr<DataFeed> Creator_##data_feed_class() { \
|
||||
return std::shared_ptr<DataFeed>(new data_feed_class); \
|
||||
} \
|
||||
class __Registerer_##data_feed_class { \
|
||||
public: \
|
||||
__Registerer_##data_feed_class() { \
|
||||
g_data_feed_map[#data_feed_class] = &Creator_##data_feed_class; \
|
||||
} \
|
||||
}; \
|
||||
__Registerer_##data_feed_class g_registerer_##data_feed_class; \
|
||||
} // namespace
|
||||
|
||||
std::string DataFeedFactory::DataFeedTypeList() {
|
||||
std::string data_feed_types;
|
||||
for (auto iter = g_data_feed_map.begin(); iter != g_data_feed_map.end();
|
||||
++iter) {
|
||||
if (iter != g_data_feed_map.begin()) {
|
||||
data_feed_types += ", ";
|
||||
}
|
||||
data_feed_types += iter->first;
|
||||
}
|
||||
return data_feed_types;
|
||||
}
|
||||
|
||||
std::shared_ptr<DataFeed> DataFeedFactory::CreateDataFeed(
|
||||
std::string data_feed_class) {
|
||||
if (g_data_feed_map.count(data_feed_class) < 1) {
|
||||
exit(-1);
|
||||
}
|
||||
return g_data_feed_map[data_feed_class]();
|
||||
}
|
||||
|
||||
REGISTER_DATAFEED_CLASS(MultiSlotDataFeed);
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,29 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <memory>
|
||||
#include <string>
|
||||
#include "paddle/fluid/framework/data_feed.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
class DataFeedFactory {
|
||||
public:
|
||||
static std::string DataFeedTypeList();
|
||||
static std::shared_ptr<DataFeed> CreateDataFeed(std::string data_feed_class);
|
||||
};
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,223 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/executor_thread_worker.h"
|
||||
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
||||
#include "google/protobuf/message.h"
|
||||
#include "google/protobuf/text_format.h"
|
||||
|
||||
#include "gflags/gflags.h"
|
||||
#include "paddle/fluid/framework/feed_fetch_method.h"
|
||||
#include "paddle/fluid/framework/feed_fetch_type.h"
|
||||
#include "paddle/fluid/framework/lod_rank_table.h"
|
||||
#include "paddle/fluid/framework/lod_tensor_array.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/reader.h"
|
||||
#include "paddle/fluid/framework/variable_helper.h"
|
||||
#include "paddle/fluid/inference/io.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
#include "paddle/fluid/pybind/pybind.h"
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
|
||||
void ExecutorThreadWorker::CreateThreadOperators(const ProgramDesc& program) {
|
||||
auto& block = program.Block(0);
|
||||
op_names_.clear();
|
||||
for (auto& op_desc : block.AllOps()) {
|
||||
std::unique_ptr<OperatorBase> local_op = OpRegistry::CreateOp(*op_desc);
|
||||
op_names_.push_back(op_desc->Type());
|
||||
OperatorBase* local_op_ptr = local_op.release();
|
||||
ops_.push_back(local_op_ptr);
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::CreateThreadResource(
|
||||
const framework::ProgramDesc& program,
|
||||
const paddle::platform::Place& place) {
|
||||
CreateThreadScope(program);
|
||||
CreateThreadOperators(program);
|
||||
SetMainProgram(program);
|
||||
SetPlace(place);
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::CreateThreadScope(const ProgramDesc& program) {
|
||||
auto& block = program.Block(0);
|
||||
|
||||
PADDLE_ENFORCE_NOT_NULL(
|
||||
root_scope_, "root_scope should be set before creating thread scope");
|
||||
|
||||
thread_scope_ = &root_scope_->NewScope();
|
||||
for (auto& var : block.AllVars()) {
|
||||
if (var->Persistable()) {
|
||||
auto* ptr = root_scope_->Var(var->Name());
|
||||
InitializeVariable(ptr, var->GetType());
|
||||
} else {
|
||||
auto* ptr = thread_scope_->Var(var->Name());
|
||||
InitializeVariable(ptr, var->GetType());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetDataFeed(
|
||||
const std::shared_ptr<DataFeed>& datafeed) {
|
||||
thread_reader_ = datafeed;
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::BindingDataFeedMemory() {
|
||||
const std::vector<std::string>& input_feed =
|
||||
thread_reader_->GetUseSlotAlias();
|
||||
for (auto name : input_feed) {
|
||||
thread_reader_->AddFeedVar(thread_scope_->Var(name), name);
|
||||
}
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetFetchVarNames(
|
||||
const std::vector<std::string>& fetch_var_names) {
|
||||
fetch_var_names_.clear();
|
||||
fetch_var_names_.insert(fetch_var_names_.end(), fetch_var_names.begin(),
|
||||
fetch_var_names.end());
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetDevice() {
|
||||
#if defined _WIN32 || defined __APPLE__
|
||||
return;
|
||||
#else
|
||||
static unsigned concurrency_cap = std::thread::hardware_concurrency();
|
||||
int thread_id = this->thread_id_;
|
||||
|
||||
if (thread_id < concurrency_cap) {
|
||||
unsigned proc = thread_id;
|
||||
|
||||
cpu_set_t mask;
|
||||
CPU_ZERO(&mask);
|
||||
CPU_SET(proc, &mask);
|
||||
|
||||
if (-1 == sched_setaffinity(0, sizeof(mask), &mask)) {
|
||||
VLOG(1) << "WARNING: Failed to set thread affinity for thread "
|
||||
<< thread_id;
|
||||
} else {
|
||||
CPU_ZERO(&mask);
|
||||
if ((0 != sched_getaffinity(0, sizeof(mask), &mask)) ||
|
||||
(CPU_ISSET(proc, &mask) == 0)) {
|
||||
VLOG(3) << "WARNING: Failed to set thread affinity for thread "
|
||||
<< thread_id;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
VLOG(1) << "WARNING: Failed to set thread affinity for thread "
|
||||
<< thread_id;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void print_lod_tensor(std::string var_name, const LoDTensor& lod_tensor) {
|
||||
auto inspect = lod_tensor.data<T>();
|
||||
auto element_num = lod_tensor.numel();
|
||||
|
||||
std::ostringstream sstream;
|
||||
sstream << var_name << " (element num " << element_num << "): [";
|
||||
sstream << inspect[0];
|
||||
for (int j = 1; j < element_num; ++j) {
|
||||
sstream << " " << inspect[j];
|
||||
}
|
||||
sstream << "]";
|
||||
|
||||
std::cout << sstream.str() << std::endl;
|
||||
}
|
||||
|
||||
void print_fetch_var(Scope* scope, std::string var_name) {
|
||||
const LoDTensor& tensor = scope->FindVar(var_name)->Get<LoDTensor>();
|
||||
|
||||
if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(platform::float16))) {
|
||||
print_lod_tensor<platform::float16>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) == std::type_index(typeid(float))) {
|
||||
print_lod_tensor<float>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(double))) {
|
||||
print_lod_tensor<double>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) == std::type_index(typeid(int))) {
|
||||
print_lod_tensor<int>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(int64_t))) {
|
||||
print_lod_tensor<int64_t>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) == std::type_index(typeid(bool))) {
|
||||
print_lod_tensor<bool>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(uint8_t))) {
|
||||
print_lod_tensor<uint8_t>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(int16_t))) {
|
||||
print_lod_tensor<int16_t>(var_name, tensor);
|
||||
} else if (std::type_index(tensor.type()) ==
|
||||
std::type_index(typeid(int8_t))) {
|
||||
print_lod_tensor<int8_t>(var_name, tensor);
|
||||
} else {
|
||||
VLOG(1) << "print_fetch_var: unrecognized data type:"
|
||||
<< tensor.type().name();
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::TrainFiles() {
|
||||
// todo: configurable
|
||||
SetDevice();
|
||||
|
||||
int fetch_var_num = fetch_var_names_.size();
|
||||
fetch_values_.clear();
|
||||
fetch_values_.resize(fetch_var_num);
|
||||
|
||||
thread_reader_->Start();
|
||||
|
||||
int cur_batch;
|
||||
int batch_cnt = 0;
|
||||
while ((cur_batch = thread_reader_->Next()) > 0) {
|
||||
// executor run here
|
||||
for (auto& op : ops_) {
|
||||
op->Run(*thread_scope_, place_);
|
||||
}
|
||||
|
||||
++batch_cnt;
|
||||
thread_scope_->DropKids();
|
||||
|
||||
if (debug_ == false || thread_id_ != 0) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (int i = 0; i < fetch_var_num; ++i) {
|
||||
print_fetch_var(thread_scope_, fetch_var_names_[i]);
|
||||
} // end for (int i = 0...)
|
||||
} // end while ()
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetThreadId(int tid) { thread_id_ = tid; }
|
||||
|
||||
void ExecutorThreadWorker::SetPlace(const platform::Place& place) {
|
||||
place_ = place;
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetMainProgram(
|
||||
const ProgramDesc& main_program_desc) {
|
||||
main_program_.reset(new ProgramDesc(main_program_desc));
|
||||
}
|
||||
|
||||
void ExecutorThreadWorker::SetRootScope(Scope* g_scope) {
|
||||
root_scope_ = g_scope;
|
||||
}
|
||||
|
||||
} // einit_modelnd namespace framework
|
||||
} // end namespace paddle
|
@ -0,0 +1,88 @@
|
||||
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <map>
|
||||
#include <memory>
|
||||
#include <mutex> // NOLINT
|
||||
#include <set>
|
||||
#include <string>
|
||||
#include <thread> // NOLINT
|
||||
#include <vector>
|
||||
#include "paddle/fluid/framework/data_feed.h"
|
||||
#include "paddle/fluid/framework/executor.h"
|
||||
#include "paddle/fluid/framework/program_desc.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
void CreateTensor(Variable* var, proto::VarType::Type var_type);
|
||||
|
||||
class ExecutorThreadWorker {
|
||||
public:
|
||||
ExecutorThreadWorker()
|
||||
: thread_id_(-1), root_scope_(NULL), thread_scope_(NULL), debug_(false) {}
|
||||
~ExecutorThreadWorker() {}
|
||||
|
||||
void CreateThreadResource(const framework::ProgramDesc& program,
|
||||
const paddle::platform::Place& place);
|
||||
void SetThreadId(int tid);
|
||||
void SetDebug(const bool debug) { debug_ = debug; }
|
||||
void SetRootScope(Scope* g_scope);
|
||||
// set cpu device in this function
|
||||
// cpu binding is used by default
|
||||
void SetDevice();
|
||||
// since we read data into memory that can not be accessed by program
|
||||
// we need to bind memory of data with corresponding variables in program
|
||||
// this function should be called after data feed is set
|
||||
void BindingDataFeedMemory();
|
||||
// set data feed declared in executor
|
||||
void SetDataFeed(const std::shared_ptr<DataFeed>& datafeed);
|
||||
// A multi-thread training function
|
||||
void TrainFiles();
|
||||
// set fetch variable names from python interface assigned by users
|
||||
void SetFetchVarNames(const std::vector<std::string>& fetch_var_names);
|
||||
|
||||
private:
|
||||
void CreateThreadScope(const framework::ProgramDesc& program);
|
||||
void CreateThreadOperators(const framework::ProgramDesc& program);
|
||||
void SetMainProgram(const ProgramDesc& main_program_desc);
|
||||
void SetPlace(const paddle::platform::Place& place);
|
||||
|
||||
protected:
|
||||
// thread index
|
||||
std::shared_ptr<DataFeed> thread_reader_; // shared queue, thread buffer
|
||||
int thread_id_;
|
||||
// operator name
|
||||
std::vector<std::string> op_names_;
|
||||
// thread level, local operators for forward and backward
|
||||
std::vector<OperatorBase*> ops_;
|
||||
// main program for training
|
||||
std::unique_ptr<framework::ProgramDesc> main_program_;
|
||||
// execution place
|
||||
platform::Place place_;
|
||||
// root scope for model parameters
|
||||
Scope* root_scope_;
|
||||
// a thread scope, father scope is global score which is shared
|
||||
Scope* thread_scope_;
|
||||
|
||||
private:
|
||||
std::vector<std::string> fetch_var_names_;
|
||||
std::vector<std::vector<float>> fetch_values_;
|
||||
bool debug_;
|
||||
};
|
||||
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,60 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/framework/variable_helper.h"
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/feed_fetch_type.h"
|
||||
#include "paddle/fluid/framework/lod_rank_table.h"
|
||||
#include "paddle/fluid/framework/lod_tensor.h"
|
||||
#include "paddle/fluid/framework/lod_tensor_array.h"
|
||||
#include "paddle/fluid/framework/reader.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
#include "paddle/fluid/framework/selected_rows.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
void InitializeVariable(Variable* var, proto::VarType::Type var_type) {
|
||||
if (var_type == proto::VarType::LOD_TENSOR) {
|
||||
var->GetMutable<LoDTensor>();
|
||||
} else if (var_type == proto::VarType::SELECTED_ROWS) {
|
||||
var->GetMutable<SelectedRows>();
|
||||
} else if (var_type == proto::VarType::FEED_MINIBATCH) {
|
||||
var->GetMutable<FeedFetchList>();
|
||||
} else if (var_type == proto::VarType::FETCH_LIST) {
|
||||
var->GetMutable<FeedFetchList>();
|
||||
} else if (var_type == proto::VarType::STEP_SCOPES) {
|
||||
var->GetMutable<std::vector<framework::Scope*>>();
|
||||
} else if (var_type == proto::VarType::LOD_RANK_TABLE) {
|
||||
var->GetMutable<LoDRankTable>();
|
||||
} else if (var_type == proto::VarType::LOD_TENSOR_ARRAY) {
|
||||
var->GetMutable<LoDTensorArray>();
|
||||
} else if (var_type == proto::VarType::PLACE_LIST) {
|
||||
var->GetMutable<platform::PlaceList>();
|
||||
} else if (var_type == proto::VarType::READER) {
|
||||
var->GetMutable<ReaderHolder>();
|
||||
} else if (var_type == proto::VarType::RAW) {
|
||||
// GetMutable will be called in operator
|
||||
} else {
|
||||
PADDLE_THROW(
|
||||
"Variable type %d is not in "
|
||||
"[LOD_TENSOR, SELECTED_ROWS, FEED_MINIBATCH, FETCH_LIST, "
|
||||
"LOD_RANK_TABLE, PLACE_LIST, READER, RAW]",
|
||||
var_type);
|
||||
}
|
||||
}
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,22 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#pragma once
|
||||
|
||||
#include "paddle/fluid/framework/framework.pb.h"
|
||||
#include "paddle/fluid/framework/variable.h"
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
void InitializeVariable(Variable *var, proto::VarType::Type var_type);
|
||||
}
|
||||
}
|
@ -0,0 +1,53 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include <fcntl.h>
|
||||
|
||||
// To avoid conflicting definition in gcc-4.8.2 headers and pyconfig.h (2.7.3)
|
||||
#ifdef _POSIX_C_SOURCE
|
||||
#undef _POSIX_C_SOURCE
|
||||
#endif
|
||||
|
||||
#ifdef _XOPEN_SOURCE
|
||||
#undef _XOPEN_SOURCE
|
||||
#endif
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "google/protobuf/io/zero_copy_stream_impl.h"
|
||||
#include "google/protobuf/text_format.h"
|
||||
#include "paddle/fluid/framework/async_executor.h"
|
||||
#include "paddle/fluid/framework/data_feed.h"
|
||||
#include "paddle/fluid/framework/data_feed.pb.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
#include "paddle/fluid/inference/io.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
#include "paddle/fluid/platform/variant.h"
|
||||
#include "paddle/fluid/pybind/async_executor_py.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
namespace pd = paddle::framework;
|
||||
|
||||
namespace paddle {
|
||||
namespace pybind {
|
||||
using set_name_func = void (pd::DataFeedDesc::*)(const std::string&);
|
||||
void BindAsyncExecutor(py::module* m) {
|
||||
py::class_<framework::AsyncExecutor>(*m, "AsyncExecutor")
|
||||
.def(py::init([](framework::Scope* scope, const platform::Place& place) {
|
||||
return std::unique_ptr<framework::AsyncExecutor>(
|
||||
new framework::AsyncExecutor(scope, place));
|
||||
}))
|
||||
.def("run_from_files", &framework::AsyncExecutor::RunFromFile);
|
||||
} // end BindAsyncExecutor
|
||||
} // end namespace pybind
|
||||
} // end namespace paddle
|
@ -0,0 +1,28 @@
|
||||
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "pybind11/pybind11.h"
|
||||
#include "pybind11/stl.h"
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
namespace paddle {
|
||||
namespace pybind {
|
||||
|
||||
void BindAsyncExecutor(py::module* m);
|
||||
|
||||
} // namespace pybind
|
||||
} // namespace paddle
|
@ -0,0 +1,151 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import contextlib
|
||||
import six
|
||||
from .framework import Program, default_main_program, Variable
|
||||
from . import core
|
||||
from .executor import global_scope, Executor
|
||||
from paddle.fluid.proto import data_feed_pb2
|
||||
from google.protobuf import text_format
|
||||
from . import io
|
||||
from .data_feed_desc import DataFeedDesc
|
||||
|
||||
__all__ = ['AsyncExecutor']
|
||||
|
||||
|
||||
class AsyncExecutor(object):
|
||||
"""
|
||||
An asynchronous Executor in Python. Through exploiting the power of
|
||||
multi-core processor and data queueing, AsyncExecutor makes data reading
|
||||
and cosuming decoupled, each run in multiple threads in parallel.
|
||||
|
||||
Instead of reading data in python side, AsyncExecutor accepts a training
|
||||
file list, which will be retrieved in C++, then training inputs will be
|
||||
read, parsed and fed to training network within C++ code.
|
||||
|
||||
AsyncExecutor is in active development and the API might change in the near
|
||||
future.
|
||||
|
||||
Example:
|
||||
>>> data_feed = fluid.DataFeedDesc('data.proto')
|
||||
>>> startup_program = fluid.default_startup_program()
|
||||
>>> main_program = fluid.default_main_program()
|
||||
>>> filelist = ["train_data/part-%d" % i for i in range(100)]
|
||||
>>> thread_num = len(filelist) / 4
|
||||
>>>
|
||||
>>> place = fluid.CPUPlace()
|
||||
>>> async_executor = fluid.AsyncExecutor(place)
|
||||
>>>
|
||||
>>> async_executor.run_startup_program(startup_program)
|
||||
>>>
|
||||
>>> epoch = 10
|
||||
>>> for i in range(epoch):
|
||||
>>> async_executor.run(main_program,
|
||||
>>> data_feed,
|
||||
>>> filelist,
|
||||
>>> thread_num,
|
||||
>>> [acc],
|
||||
>>> debug=False)
|
||||
|
||||
Args:
|
||||
place(fluid.CPUPlace|None): indicate the executor run on which device.
|
||||
Only CPUPlace supported
|
||||
|
||||
Note:
|
||||
For debugging complicated network in parallel-GPUs, you can test it
|
||||
on the executor. They has the exactly same arguments, and expected
|
||||
the same results.
|
||||
|
||||
Note: Only running on CPUPlace supported.
|
||||
"""
|
||||
|
||||
def __init__(self, place=None):
|
||||
if place is None:
|
||||
place = core.CPUPlace()
|
||||
if not isinstance(place, core.CPUPlace):
|
||||
raise ValueError("AsyncExecutor only supports CPU device")
|
||||
|
||||
p = core.Place()
|
||||
p.set_place(place)
|
||||
|
||||
scope = global_scope()
|
||||
self.executor = core.AsyncExecutor(scope, p)
|
||||
|
||||
def run(self, program, data_feed, filelist, thread_num, fetch, debug=False):
|
||||
"""
|
||||
Run program by this AsyncExecutor. Training dataset will be in filelist.
|
||||
Users can also inspect certain variables by naming them in parameter
|
||||
:code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
|
||||
AsyncExecutor doesn't return fetched variables, instead, it will dump
|
||||
the values of each fetched variable to stdandard output.
|
||||
|
||||
Running the dataset will be on multiple threads, within each a thread
|
||||
local scope will be created, then all OPs also created in that scope.
|
||||
Parameters are updated by all the OPs simultaneously.
|
||||
|
||||
Args:
|
||||
program(Program): the program that need to run, if not provied,
|
||||
then default_main_program will be used.
|
||||
data_feed(DataFeedDesc): A DataFeedDesc object
|
||||
filelist(str): a file containing the training dataset file list
|
||||
thread_num(int): number of concurrent training threads. See
|
||||
:code:`Note` for how to set this properly
|
||||
fetch(str|list): the var name or a list of var names to inspect
|
||||
debug(bool): When set to True, fetch vars will be printed to
|
||||
standard output after each minibatch
|
||||
|
||||
Note:
|
||||
the executor will run all operators in the program but not only
|
||||
the operators dependent by the fetch_list.
|
||||
|
||||
Note:
|
||||
Running AsyncExecutor will be on multiple threads, each bound to a
|
||||
CPU core. To achieve best performance, it's suggested to set thread
|
||||
num to be equal or slightly less than that of CPU cores.
|
||||
"""
|
||||
if program is None:
|
||||
program = default_main_program()
|
||||
program_desc = program.desc
|
||||
|
||||
if data_feed is None:
|
||||
raise ValueError('ValueError: data_feed should be provided')
|
||||
|
||||
if filelist is None:
|
||||
raise ValueError('ValueError: filelist should be provided')
|
||||
|
||||
if isinstance(filelist, str):
|
||||
filelist = [filelist]
|
||||
|
||||
if not isinstance(thread_num, int):
|
||||
raise TypeError('TypeError: thread_num should be a positive number')
|
||||
|
||||
if fetch is not None:
|
||||
if isinstance(fetch, Variable):
|
||||
fetch = [fetch]
|
||||
fetch_var_names = [var.name for var in fetch]
|
||||
for fetch_var in fetch:
|
||||
shape = fetch_var.shape
|
||||
if shape[len(shape) - 1] != 1:
|
||||
raise AssertionError(
|
||||
"%s: Fetch variable has wrong shape. Only varibles "
|
||||
"with the last dimension size 1 supported." %
|
||||
(fetch_var.name))
|
||||
|
||||
self.executor.run_from_files(program_desc,
|
||||
data_feed.desc(), filelist, thread_num,
|
||||
fetch_var_names, debug)
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue