|
|
|
@ -22,44 +22,75 @@ from paddle.fluid.tests.unittests.op_test import OpTest
|
|
|
|
|
class TestQuantizeOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = 'quantize'
|
|
|
|
|
self.scale = 2.0
|
|
|
|
|
self.input_size = [1, 1, 5, 5] #Naive nChw16c
|
|
|
|
|
self.scale = 255.0
|
|
|
|
|
self.shift = 0.0
|
|
|
|
|
self.input_size = [1, 1, 5, 5] # Naive nChw16c
|
|
|
|
|
self.is_negative = False
|
|
|
|
|
self.output_format = 'NCHW'
|
|
|
|
|
self.set_scale()
|
|
|
|
|
self.set_shift()
|
|
|
|
|
self.set_is_negative()
|
|
|
|
|
self.set_input_size()
|
|
|
|
|
self.set_output_format()
|
|
|
|
|
self.prepare_input()
|
|
|
|
|
self.prepare_output()
|
|
|
|
|
|
|
|
|
|
def prepare_input(self):
|
|
|
|
|
if self.is_negative:
|
|
|
|
|
input = (100 * np.random.random_sample(self.input_size) - 50
|
|
|
|
|
# input data values are from interval [-1.0, 1.0)
|
|
|
|
|
self.input = (2 * np.random.random_sample(self.input_size) - 1
|
|
|
|
|
).astype('float32')
|
|
|
|
|
output = np.round(input * self.scale).astype('int8')
|
|
|
|
|
else:
|
|
|
|
|
input = (100 *
|
|
|
|
|
# input data values are from interval [0.0, 1.0)
|
|
|
|
|
self.input = (
|
|
|
|
|
np.random.random_sample(self.input_size)).astype('float32')
|
|
|
|
|
output = np.round(input * self.scale).astype('uint8')
|
|
|
|
|
|
|
|
|
|
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
|
|
|
|
|
|
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
|
|
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(self.input)}
|
|
|
|
|
self.attrs = {
|
|
|
|
|
'Scale': self.scale,
|
|
|
|
|
'is_negative_input': self.is_negative
|
|
|
|
|
'Shift': self.shift,
|
|
|
|
|
'is_negative_input': self.is_negative,
|
|
|
|
|
'output_format': self.output_format
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def prepare_output(self):
|
|
|
|
|
input_data_type = 'int8' if self.is_negative else 'uint8'
|
|
|
|
|
output = np.rint(self.input * self.scale + self.shift).astype(
|
|
|
|
|
input_data_type)
|
|
|
|
|
self.outputs = {'Output': output}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
# TODO(wangzhongpu): support mkldnn op in dygraph mode
|
|
|
|
|
self.check_output(check_dygraph=False)
|
|
|
|
|
|
|
|
|
|
def check_raise_error(self, msg):
|
|
|
|
|
try:
|
|
|
|
|
self.check_output()
|
|
|
|
|
except Exception as e:
|
|
|
|
|
if msg in str(e):
|
|
|
|
|
raise AttributeError
|
|
|
|
|
else:
|
|
|
|
|
print(e)
|
|
|
|
|
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def set_shift(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOp1(TestQuantizeOp):
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 1.5
|
|
|
|
|
self.scale = 127.0
|
|
|
|
|
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
self.is_nagative = True
|
|
|
|
@ -67,11 +98,137 @@ class TestQuantizeOp1(TestQuantizeOp):
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOp2(TestQuantizeOp):
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 0.1
|
|
|
|
|
self.scale = 255.0
|
|
|
|
|
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
self.is_nagative = False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOp_ZeroScale(TestQuantizeOp):
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 0.0
|
|
|
|
|
|
|
|
|
|
def prepare_output(self):
|
|
|
|
|
self.output = np.zeros(self.input_size)
|
|
|
|
|
self.outputs = {'Output': self.output}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.assertRaises(AttributeError, self.check_raise_error,
|
|
|
|
|
'Quantization scale cannot be 0.0')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 2-dim input
|
|
|
|
|
# P - positive input
|
|
|
|
|
class TestQuantizeOpShift_NCHW_2_P(TestQuantizeOp):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NCHW'
|
|
|
|
|
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
self.is_nagative = False
|
|
|
|
|
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 255.0
|
|
|
|
|
|
|
|
|
|
def set_shift(self):
|
|
|
|
|
self.shift = 0.0
|
|
|
|
|
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
self.input_size = [2, 3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 2-dim input
|
|
|
|
|
# N - negative input
|
|
|
|
|
class TestQuantizeOpShift_NCHW_2_N(TestQuantizeOpShift_NCHW_2_P):
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
self.is_nagative = True
|
|
|
|
|
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 127.0
|
|
|
|
|
|
|
|
|
|
def set_shift(self):
|
|
|
|
|
self.shift = 128.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_2_P(TestQuantizeOpShift_NCHW_2_P):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_2_N(TestQuantizeOpShift_NCHW_2_N):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 3-dim input
|
|
|
|
|
class TestQuantizeOpShift_NCHW_3_P(TestQuantizeOpShift_NCHW_2_P):
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
self.input_size = [2, 3, 4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NCHW_3_N(TestQuantizeOpShift_NCHW_2_N):
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
self.input_size = [2, 3, 4]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_3_P(TestQuantizeOpShift_NCHW_3_P):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_3_N(TestQuantizeOpShift_NCHW_3_N):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# 4-dim input
|
|
|
|
|
class TestQuantizeOpShift_NCHW_4_P(TestQuantizeOpShift_NCHW_2_P):
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
self.input_size = [2, 3, 4, 5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NCHW_4_N(TestQuantizeOpShift_NCHW_2_N):
|
|
|
|
|
def set_input_size(self):
|
|
|
|
|
self.input_size = [2, 3, 4, 5]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_4_P(TestQuantizeOpShift_NCHW_4_P):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOpShift_NHWC_4_N(TestQuantizeOpShift_NCHW_4_N):
|
|
|
|
|
def set_output_format(self):
|
|
|
|
|
self.output_format = 'NHWC'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOp_NegativeShift(TestQuantizeOp):
|
|
|
|
|
def set_is_negative(self):
|
|
|
|
|
self.is_nagative = False
|
|
|
|
|
|
|
|
|
|
def set_scale(self):
|
|
|
|
|
self.scale = 100.0
|
|
|
|
|
|
|
|
|
|
def set_shift(self):
|
|
|
|
|
self.shift = -10.0
|
|
|
|
|
|
|
|
|
|
def prepare_output(self):
|
|
|
|
|
self.output = np.zeros(self.input_size)
|
|
|
|
|
self.outputs = {'Output': self.output}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.assertRaises(AttributeError, self.check_raise_error,
|
|
|
|
|
'Quantization shift must be nonnegative.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestQuantizeOp_TooBigShift(TestQuantizeOp_NegativeShift):
|
|
|
|
|
def set_shift(self):
|
|
|
|
|
self.shift = 300.0
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.assertRaises(
|
|
|
|
|
AttributeError, self.check_raise_error,
|
|
|
|
|
'Quantization shift must be less than or equal to 255.')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
unittest.main()
|
|
|
|
|