Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into doc_fix
commit
44c64a641d
@ -0,0 +1,80 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid.transpiler.distribute_transpiler import delete_ops
|
||||
|
||||
from transpiler_test import TranspilerTest
|
||||
|
||||
|
||||
class TestSimpleDistTranspiler(TranspilerTest):
|
||||
def setUp(self):
|
||||
self.current_pserver_ep = "127.0.0.1:6175"
|
||||
|
||||
def test_simple_transpiler(self):
|
||||
np.random.seed(1)
|
||||
|
||||
trainer = self.get_trainer()
|
||||
pserver, startup = self.get_pserver(self.current_pserver_ep)
|
||||
self.assertEqual([op.type for op in trainer.global_block().ops],
|
||||
self.get_expect_trainer_ops())
|
||||
|
||||
self.assertEqual(len(pserver.blocks), 2)
|
||||
# block0: listen_and_serv
|
||||
self.assertEqual([op.type for op in pserver.blocks[0].ops],
|
||||
["listen_and_serv"])
|
||||
# block1: optimize pass
|
||||
self.assertEqual([op.type for op in pserver.blocks[1].ops],
|
||||
["sum", "scale", "sgd"])
|
||||
|
||||
# confirm startup program
|
||||
self.assertEqual([op.type for op in startup.global_block().ops],
|
||||
["fill_constant", "uniform_random", "uniform_random"])
|
||||
|
||||
# the variable #fc_w will NOT be splited
|
||||
fc_w_var = startup.global_block().var("fc_w@GRAD")
|
||||
self.assertEqual(fc_w_var.shape, (1000, 1000))
|
||||
|
||||
fc_w_var = startup.global_block().var("fc_w@GRAD.trainer_0")
|
||||
self.assertEqual(fc_w_var.shape, (1000, 1000))
|
||||
|
||||
def get_expect_trainer_ops(self):
|
||||
trainer = fluid.Program()
|
||||
|
||||
with fluid.program_guard(trainer):
|
||||
optimize_ops, params_grads = self.net_conf()
|
||||
|
||||
delete_ops(trainer.global_block(), optimize_ops)
|
||||
ops = [op.type for op in trainer.global_block().ops] + [
|
||||
"send_vars", "send_barrier", "recv", "recv", "fetch_barrier"
|
||||
]
|
||||
ops.insert(ops.index("elementwise_add_grad") + 1, "send_vars")
|
||||
return ops
|
||||
|
||||
def _transpiler_instance(self):
|
||||
main = self.get_main_program()
|
||||
t = fluid.DistributeTranspiler()
|
||||
t.transpile(
|
||||
self.trainer_id,
|
||||
program=main,
|
||||
pservers=self.pserver_eps,
|
||||
trainers=self.trainers,
|
||||
slice_var_up=False)
|
||||
return t
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
@ -0,0 +1,73 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
import paddle.fluid.layers as layers
|
||||
|
||||
|
||||
class TranspilerTest(unittest.TestCase):
|
||||
@classmethod
|
||||
def setUpClass(self):
|
||||
self.trainer_id = 0
|
||||
self.trainers = 2
|
||||
self.pservers = 2
|
||||
self.pserver_eps = "127.0.0.1:6174,127.0.0.1:6175"
|
||||
|
||||
def net_conf(self):
|
||||
x = fluid.layers.data(name='x', shape=[1000], dtype='float32')
|
||||
|
||||
y_predict = fluid.layers.fc(input=x,
|
||||
size=1000,
|
||||
act=None,
|
||||
param_attr=fluid.ParamAttr(name='fc_w'))
|
||||
|
||||
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
||||
|
||||
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
||||
avg_cost = fluid.layers.mean(cost)
|
||||
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.1)
|
||||
|
||||
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
|
||||
return optimize_ops, params_grads
|
||||
|
||||
def get_main_program(self):
|
||||
main = fluid.Program()
|
||||
|
||||
with fluid.program_guard(main):
|
||||
self.net_conf()
|
||||
|
||||
return main
|
||||
|
||||
def get_trainer(self):
|
||||
return self._transpiler_instance().get_trainer_program()
|
||||
|
||||
def get_pserver(self, ep):
|
||||
t = self._transpiler_instance()
|
||||
pserver = t.get_pserver_program(ep)
|
||||
startup = t.get_startup_program(ep, pserver)
|
||||
return pserver, startup
|
||||
|
||||
def _transpiler_instance(self):
|
||||
main = self.get_main_program()
|
||||
t = fluid.DistributeTranspiler()
|
||||
t.transpile(
|
||||
self.trainer_id,
|
||||
program=main,
|
||||
pservers=self.pserver_eps,
|
||||
trainers=self.trainers)
|
||||
return t
|
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue