beam search api and unitest in hierarchical rnn (#122)
parent
baaaa0b09d
commit
4615c5172c
@ -0,0 +1,16 @@
|
||||
0 1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
1 2 3 4
|
||||
|
@ -0,0 +1,73 @@
|
||||
#edit-mode: -*- python -*-
|
||||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from paddle.trainer_config_helpers import *
|
||||
|
||||
settings(batch_size=15, learning_rate=0)
|
||||
|
||||
num_words = 5
|
||||
beam_flag = get_config_arg('beam_search', bool, False)
|
||||
|
||||
sent_id = data_layer(name="sent_id", size=1)
|
||||
|
||||
# This layer has no actual use, but only to decide batch_size in generation.
|
||||
# When generating, at least one Memory in RecurrentLayer MUST have a boot layer.
|
||||
dummy_data = data_layer(name="dummy_data_input", size=2)
|
||||
|
||||
def outer_step(dummy_data):
|
||||
|
||||
gen_inputs = [StaticInput(input=dummy_data, size=2, is_seq=True),
|
||||
GeneratedInput(size=num_words,
|
||||
embedding_name="wordvec",
|
||||
embedding_size=num_words)]
|
||||
|
||||
def inner_step(dummy_memory, predict_word):
|
||||
|
||||
# simplified RNN for testing
|
||||
with mixed_layer(size=num_words) as layer:
|
||||
layer += full_matrix_projection(input=predict_word,
|
||||
param_attr=ParamAttr(name="transtable"))
|
||||
|
||||
with mixed_layer(size=num_words, act=ExpActivation()) as out:
|
||||
out += trans_full_matrix_projection(input=layer,
|
||||
param_attr=ParamAttr(name="wordvec"))
|
||||
|
||||
return out
|
||||
|
||||
beam_gen = beam_search(name="rnn_gen",
|
||||
step=inner_step,
|
||||
input=gen_inputs,
|
||||
bos_id=0,
|
||||
eos_id=num_words-1,
|
||||
beam_size=2 if beam_flag else 1,
|
||||
num_results_per_sample=2 if beam_flag else 1,
|
||||
max_length=10)
|
||||
return beam_gen
|
||||
|
||||
beam_gen_concat = recurrent_group(name="rnn_gen_concat",
|
||||
step=outer_step,
|
||||
input=[SubsequenceInput(dummy_data)])
|
||||
|
||||
seqtext_printer_evaluator(input=beam_gen_concat,
|
||||
id_input=sent_id,
|
||||
dict_file="./trainer/tests/test_gen_dict.txt",
|
||||
result_file="./trainer/tests/dump_text.test")
|
||||
#outputs(beam_gen_concat)
|
||||
# In this config, as dummy_data_input doesn't work on beam_gen (we can find dummy_memory
|
||||
# is read-only memory, and isn't used by other layers of step), we show the Inputs and Outputs
|
||||
# as follows. Note that "__beam_search_predict__" is the default output name of beam_search.
|
||||
Inputs("sent_id","dummy_data_input")
|
||||
Outputs("__beam_search_predict__")
|
Loading…
Reference in new issue