|
|
@ -19,9 +19,38 @@ import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
from paddle.io import TensorDataset, DataLoader
|
|
|
|
from paddle.io import Dataset, IterableDataset, TensorDataset, \
|
|
|
|
|
|
|
|
ComposeDataset, ChainDataset, DataLoader
|
|
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
IMAGE_SIZE = 32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RandomDataset(Dataset):
|
|
|
|
|
|
|
|
def __init__(self, sample_num):
|
|
|
|
|
|
|
|
self.sample_num = sample_num
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
|
|
|
|
return self.sample_num
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
|
|
|
|
np.random.seed(idx)
|
|
|
|
|
|
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
|
|
|
|
|
|
label = np.random.randint(0, 9, (1, )).astype('int64')
|
|
|
|
|
|
|
|
return image, label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class RandomIterableDataset(IterableDataset):
|
|
|
|
|
|
|
|
def __init__(self, sample_num):
|
|
|
|
|
|
|
|
self.sample_num = sample_num
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __iter__(self):
|
|
|
|
|
|
|
|
for i in range(self.sample_num):
|
|
|
|
|
|
|
|
np.random.seed(i)
|
|
|
|
|
|
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
|
|
|
|
|
|
label = np.random.randint(0, 9, (1, )).astype('int64')
|
|
|
|
|
|
|
|
yield image, label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestTensorDataset(unittest.TestCase):
|
|
|
|
class TestTensorDataset(unittest.TestCase):
|
|
|
|
def run_main(self, num_workers, places):
|
|
|
|
def run_main(self, num_workers, places):
|
|
|
@ -55,8 +84,56 @@ class TestTensorDataset(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
|
|
def test_main(self):
|
|
|
|
def test_main(self):
|
|
|
|
for p in [fluid.CPUPlace(), fluid.CUDAPlace(0)]:
|
|
|
|
for p in [fluid.CPUPlace(), fluid.CUDAPlace(0)]:
|
|
|
|
for num_workers in [0, 2]:
|
|
|
|
self.run_main(num_workers=0, places=p)
|
|
|
|
ret = self.run_main(num_workers=num_workers, places=p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestComposeDataset(unittest.TestCase):
|
|
|
|
|
|
|
|
def test_main(self):
|
|
|
|
|
|
|
|
fluid.default_startup_program().random_seed = 1
|
|
|
|
|
|
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset1 = RandomDataset(10)
|
|
|
|
|
|
|
|
dataset2 = RandomDataset(10)
|
|
|
|
|
|
|
|
dataset = ComposeDataset([dataset1, dataset2])
|
|
|
|
|
|
|
|
assert len(dataset) == 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for i in range(len(dataset)):
|
|
|
|
|
|
|
|
input1, label1, input2, label2 = dataset[i]
|
|
|
|
|
|
|
|
input1_t, label1_t = dataset1[i]
|
|
|
|
|
|
|
|
input2_t, label2_t = dataset2[i]
|
|
|
|
|
|
|
|
assert np.allclose(input1, input1_t)
|
|
|
|
|
|
|
|
assert np.allclose(label1, label1_t)
|
|
|
|
|
|
|
|
assert np.allclose(input2, input2_t)
|
|
|
|
|
|
|
|
assert np.allclose(label2, label2_t)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestChainDataset(unittest.TestCase):
|
|
|
|
|
|
|
|
def run_main(self, num_workers, places):
|
|
|
|
|
|
|
|
fluid.default_startup_program().random_seed = 1
|
|
|
|
|
|
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset1 = RandomIterableDataset(10)
|
|
|
|
|
|
|
|
dataset2 = RandomIterableDataset(10)
|
|
|
|
|
|
|
|
dataset = ChainDataset([dataset1, dataset2])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples = []
|
|
|
|
|
|
|
|
for data in iter(dataset):
|
|
|
|
|
|
|
|
samples.append(data)
|
|
|
|
|
|
|
|
assert len(samples) == 20
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
idx = 0
|
|
|
|
|
|
|
|
for image, label in iter(dataset1):
|
|
|
|
|
|
|
|
assert np.allclose(image, samples[idx][0])
|
|
|
|
|
|
|
|
assert np.allclose(label, samples[idx][1])
|
|
|
|
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
for image, label in iter(dataset2):
|
|
|
|
|
|
|
|
assert np.allclose(image, samples[idx][0])
|
|
|
|
|
|
|
|
assert np.allclose(label, samples[idx][1])
|
|
|
|
|
|
|
|
idx += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_main(self):
|
|
|
|
|
|
|
|
for p in [fluid.CPUPlace(), fluid.CUDAPlace(0)]:
|
|
|
|
|
|
|
|
self.run_main(num_workers=0, places=p)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
if __name__ == '__main__':
|
|
|
|