Revert "[NPU] add npu kernel for mean Op (#31562)"
This reverts commit 468ac6993b
.
revert-31562-mean
parent
468ac6993b
commit
463617d757
@ -1,135 +0,0 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#include "paddle/fluid/operators/mean_op.h"
|
||||
#include "paddle/fluid/platform/float16.h"
|
||||
#include "paddle/fluid/operators/npu_op_runner.h"
|
||||
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MeanNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||
auto* x = ctx.Input<framework::LoDTensor>("X");
|
||||
auto* out = ctx.Output<framework::LoDTensor>("Out");
|
||||
|
||||
auto reduce_ndim = x->dims().size();
|
||||
std::vector<int> axes;
|
||||
for (auto i = 0; i < reduce_ndim; ++i) {
|
||||
axes.push_back(i);
|
||||
}
|
||||
|
||||
framework::NPUAttributeMap attr_input = {
|
||||
{"keep_dims", false},
|
||||
{"axes", axes}};
|
||||
|
||||
std::vector<int64_t> out_dims;
|
||||
out_dims.push_back(1);
|
||||
out->Resize(framework::make_ddim(out_dims));
|
||||
out->mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
Tensor reduced_out(x->type());
|
||||
std::vector<int64_t> reduced_dout_dims;
|
||||
reduced_dout_dims.push_back(1);
|
||||
reduced_out.Resize(framework::make_ddim(reduced_dout_dims));
|
||||
reduced_out.mutable_data<T>(ctx.GetPlace());
|
||||
|
||||
auto runner = NpuOpRunner("ReduceMeanD",
|
||||
{*x},
|
||||
{*out},
|
||||
attr_input);
|
||||
|
||||
auto stream =
|
||||
ctx.template device_context<
|
||||
paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
runner.Run(stream);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class MeanGradNPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto stream =
|
||||
context.template device_context<
|
||||
paddle::platform::NPUDeviceContext>()
|
||||
.stream();
|
||||
|
||||
auto grad = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
|
||||
PADDLE_ENFORCE_EQ(grad->numel(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"Mean Gradient Input Tensor len should be 1. But "
|
||||
"received Out@Grad's elements num is %d.",
|
||||
grad->numel()));
|
||||
|
||||
auto IG = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
IG->mutable_data<T>(context.GetPlace());
|
||||
|
||||
// ones
|
||||
Tensor ones(grad->type());
|
||||
std::vector<int64_t> dout_dims;
|
||||
for (auto i = 0; i < IG->dims().size(); ++i) {
|
||||
dout_dims.push_back(IG->dims()[i]);
|
||||
}
|
||||
ones.Resize(framework::make_ddim(dout_dims));
|
||||
ones.mutable_data<T>(context.GetPlace());
|
||||
auto runner_ones = NpuOpRunner("OnesLike", {*IG}, {ones}, {});
|
||||
runner_ones.Run(stream);
|
||||
|
||||
// means
|
||||
Tensor mean_tensor(grad->type());
|
||||
mean_tensor.Resize({1});
|
||||
mean_tensor.mutable_data<T>(context.GetPlace());
|
||||
std::vector<float> mean_vec;
|
||||
mean_vec.push_back(1.0/static_cast<float>(IG->numel()));
|
||||
framework::TensorFromVector(mean_vec,
|
||||
context.device_context(),
|
||||
&mean_tensor);
|
||||
|
||||
// means mul ones
|
||||
Tensor mean_ma(grad->type());
|
||||
mean_ma.Resize(framework::make_ddim(dout_dims));
|
||||
mean_ma.mutable_data<T>(context.GetPlace());
|
||||
auto runner_mul_1 = NpuOpRunner("Mul", {mean_tensor, ones}, {mean_ma}, {});
|
||||
runner_mul_1.Run(stream);
|
||||
|
||||
// and mul grad
|
||||
auto runner_mul_2 = NpuOpRunner("Mul", {mean_ma, *grad}, {*IG}, {});
|
||||
runner_mul_2.Run(stream);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
namespace plat = paddle::platform;
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
mean,
|
||||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, int>,
|
||||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, double>,
|
||||
ops::MeanNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)
|
||||
|
||||
|
||||
REGISTER_OP_NPU_KERNEL(
|
||||
mean_grad,
|
||||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
|
||||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
|
||||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, double>,
|
||||
ops::MeanGradNPUKernel<paddle::platform::NPUDeviceContext, plat::float16>)
|
@ -1,133 +0,0 @@
|
||||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifndef _WIN32
|
||||
#include <unistd.h>
|
||||
#endif
|
||||
|
||||
#include <string>
|
||||
#include <thread> // NOLINT
|
||||
#include <vector>
|
||||
|
||||
#include "gtest/gtest.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
#include "paddle/fluid/framework/operator.h"
|
||||
#include "paddle/fluid/framework/program_desc.h"
|
||||
#include "paddle/fluid/operators/dropout_op.h"
|
||||
#include "paddle/fluid/operators/math/math_function.h"
|
||||
#include "paddle/fluid/string/printf.h"
|
||||
|
||||
namespace f = paddle::framework;
|
||||
namespace p = paddle::platform;
|
||||
namespace m = paddle::operators::math;
|
||||
|
||||
USE_OP(mean);
|
||||
USE_OP_DEVICE_KERNEL(mean, NPU);
|
||||
USE_OP(mean_grad);
|
||||
USE_OP_DEVICE_KERNEL(mean_grad, NPU);
|
||||
|
||||
template <typename T>
|
||||
void Compare(f::Scope* scope, const p::DeviceContext& ctx,
|
||||
std::string op_type) {
|
||||
// init
|
||||
auto x = scope->Var("X");
|
||||
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||
|
||||
std::vector<T> init;
|
||||
init.push_back(static_cast<T>(1.0));
|
||||
init.push_back(static_cast<T>(2.0));
|
||||
init.push_back(static_cast<T>(3.0));
|
||||
init.push_back(static_cast<T>(4.0));
|
||||
|
||||
TensorFromVector(init, ctx, tensor_x);
|
||||
tensor_x->Resize({4});
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
auto place = ctx.GetPlace();
|
||||
auto out = scope->Var("Out");
|
||||
auto tensor_out = out->GetMutable<f::LoDTensor>();
|
||||
|
||||
auto op = f::OpRegistry::CreateOp(op_type,
|
||||
{{"X", {"X"}}},
|
||||
{{"Out", {"Out"}}},
|
||||
{});
|
||||
|
||||
op->Run(*scope, place);
|
||||
|
||||
std::vector<float> out_vec;
|
||||
TensorToVector(*tensor_out, ctx, &out_vec);
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
EXPECT_EQ((uint32_t)out_vec.size(), (uint32_t)1);
|
||||
EXPECT_EQ((float)out_vec[0], (float)2.5);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void CompareGrad(f::Scope* scope, const p::DeviceContext& ctx,
|
||||
std::string op_type) {
|
||||
// init
|
||||
auto dout = scope->Var("DOut");
|
||||
auto tensor_dout = dout->GetMutable<f::LoDTensor>();
|
||||
float dvalue = 2.0;
|
||||
tensor_dout->Resize({1});
|
||||
std::vector<T> init_dout;
|
||||
init_dout.push_back(static_cast<T>(dvalue));
|
||||
TensorFromVector(init_dout, ctx, tensor_dout);
|
||||
ctx.Wait();
|
||||
|
||||
auto x = scope->Var("X");
|
||||
auto tensor_x = x->GetMutable<f::LoDTensor>();
|
||||
tensor_x->Resize({4});
|
||||
|
||||
auto dx = scope->Var("DX");
|
||||
auto tensor_dx = dx->GetMutable<f::LoDTensor>();
|
||||
tensor_dx->Resize({4});
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
auto op = f::OpRegistry::CreateOp(op_type,
|
||||
{{"Out@GRAD", {"DOut"}},
|
||||
{"X", {"X"}}},
|
||||
{{"X@GRAD", {"DX"}}},
|
||||
{});
|
||||
|
||||
auto place = ctx.GetPlace();
|
||||
op->Run(*scope, place);
|
||||
|
||||
std::vector<float> out_vec;
|
||||
TensorToVector(*tensor_dx, ctx, &out_vec);
|
||||
|
||||
ctx.Wait();
|
||||
|
||||
EXPECT_EQ((uint32_t)out_vec.size(), (uint32_t)4);
|
||||
EXPECT_EQ((float)out_vec[0], (float)1.0/dvalue);
|
||||
EXPECT_EQ((float)out_vec[1], (float)1.0/dvalue);
|
||||
EXPECT_EQ((float)out_vec[2], (float)1.0/dvalue);
|
||||
EXPECT_EQ((float)out_vec[3], (float)1.0/dvalue);
|
||||
}
|
||||
|
||||
TEST(mean, NPU_fp32) {
|
||||
f::Scope scope;
|
||||
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||
Compare<float>(&scope, ctx, "mean");
|
||||
}
|
||||
|
||||
|
||||
TEST(mean_grad, NPU_fp32) {
|
||||
f::Scope scope;
|
||||
p::NPUDeviceContext ctx(p::NPUPlace(0));
|
||||
CompareGrad<float>(&scope, ctx, "mean_grad");
|
||||
}
|
@ -1,149 +0,0 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import unittest
|
||||
import sys
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from paddle.fluid import core
|
||||
|
||||
paddle.enable_static()
|
||||
SEED = 2021
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestMean(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.op_type = "mean"
|
||||
self.init_dtype()
|
||||
|
||||
x = np.random.random([3, 3]).astype(self.dtype)
|
||||
self.inputs = {'X': x}
|
||||
|
||||
self.attrs = {}
|
||||
np_out = np.mean(x)
|
||||
self.outputs = {'Out': np_out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float32
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestMeanFP16(OpTest):
|
||||
def setUp(self):
|
||||
self.set_npu()
|
||||
self.place = paddle.NPUPlace(0)
|
||||
self.op_type = "mean"
|
||||
self.init_dtype()
|
||||
|
||||
x = np.random.random([3, 3]).astype(self.dtype)
|
||||
self.inputs = {'X': x}
|
||||
|
||||
self.attrs = {}
|
||||
np_out = np.mean(x)
|
||||
self.outputs = {'Out': np_out}
|
||||
|
||||
def set_npu(self):
|
||||
self.__class__.use_npu = True
|
||||
self.__class__.no_need_check_grad = True
|
||||
|
||||
def init_dtype(self):
|
||||
self.dtype = np.float16
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(self.place, check_dygraph=False)
|
||||
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_npu(),
|
||||
"core is not compiled with NPU")
|
||||
class TestMeanNet(unittest.TestCase):
|
||||
def _test(self, run_npu=True):
|
||||
main_prog = paddle.static.Program()
|
||||
startup_prog = paddle.static.Program()
|
||||
main_prog.random_seed = SEED
|
||||
startup_prog.random_seed = SEED
|
||||
np.random.seed(SEED)
|
||||
|
||||
a_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
b_np = np.random.random(size=(32, 32)).astype('float32')
|
||||
label_np = np.random.randint(2, size=(32, 1)).astype('int64')
|
||||
|
||||
with paddle.static.program_guard(main_prog, startup_prog):
|
||||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
|
||||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
|
||||
label = paddle.static.data(
|
||||
name="label", shape=[32, 1], dtype='int64')
|
||||
|
||||
c = paddle.multiply(a, b)
|
||||
d = paddle.sqrt(c)
|
||||
|
||||
fc_1 = fluid.layers.fc(input=d, size=128)
|
||||
prediction = fluid.layers.fc(input=fc_1, size=2, act='sigmoid')
|
||||
|
||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||
loss = fluid.layers.mean(cost)
|
||||
sgd = fluid.optimizer.SGD(learning_rate=0.01)
|
||||
sgd.minimize(loss)
|
||||
|
||||
if run_npu:
|
||||
place = paddle.NPUPlace(0)
|
||||
else:
|
||||
place = paddle.CPUPlace()
|
||||
|
||||
exe = paddle.static.Executor(place)
|
||||
exe.run(startup_prog)
|
||||
|
||||
print("Start run on {}".format(place))
|
||||
for epoch in range(100):
|
||||
|
||||
pred_res, loss_res = exe.run(
|
||||
main_prog,
|
||||
feed={"a": a_np,
|
||||
"b": b_np,
|
||||
"label": label_np},
|
||||
fetch_list=[prediction, loss])
|
||||
if epoch % 10 == 0:
|
||||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
|
||||
epoch, pred_res[0], loss_res))
|
||||
|
||||
return pred_res, loss_res
|
||||
|
||||
def test_npu(self):
|
||||
cpu_pred, cpu_loss = self._test(False)
|
||||
npu_pred, npu_loss = self._test(True)
|
||||
|
||||
self.assertTrue(np.allclose(npu_pred, cpu_pred))
|
||||
self.assertTrue(np.allclose(npu_loss, cpu_loss))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
Loading…
Reference in new issue