refine gpu kernel config for Paddle (#28085)
parent
2cb1ecb99e
commit
463c72c2d9
@ -1,49 +1,103 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
// Used for compute gpu launch parameter
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
|
||||
#include "paddle/fluid/platform/cuda_primitives.h"
|
||||
#include <cuda_runtime.h>
|
||||
#include <stddef.h>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace platform {
|
||||
|
||||
struct GpuLaunchConfig {
|
||||
// Number of threads per block.
|
||||
int threads;
|
||||
// Number of blocks for GPU kernel launch.
|
||||
int blocks;
|
||||
inline int DivUp(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
GpuLaunchConfig(int threads, int blocks) : threads(threads), blocks(blocks) {}
|
||||
struct GpuLaunchConfig {
|
||||
dim3 theory_thread_count = dim3(1, 1, 1);
|
||||
dim3 thread_per_block = dim3(1, 1, 1);
|
||||
dim3 block_per_grid = dim3(1, 1, 1);
|
||||
};
|
||||
|
||||
inline GpuLaunchConfig getGpuLaunchConfig(
|
||||
const int N, const framework::ExecutionContext& ctx,
|
||||
int max_threads = 1024) {
|
||||
int threads =
|
||||
std::min(max_threads, ctx.cuda_device_context().GetMaxThreadsPerBlock());
|
||||
int physical_thread_count =
|
||||
std::min(ctx.cuda_device_context().GetMaxPhysicalThreadCount(), N);
|
||||
int blocks = std::min((physical_thread_count + threads - 1) / threads,
|
||||
ctx.cuda_device_context().GetSMCount());
|
||||
inline GpuLaunchConfig GetGpuLaunchConfig1D(
|
||||
const platform::CUDADeviceContext& context, int element_count) {
|
||||
PADDLE_ENFORCE_GT(element_count, 0, platform::errors::InvalidArgument(
|
||||
"element count should greater than 0,"
|
||||
" but received value is %d.",
|
||||
element_count));
|
||||
|
||||
const int theory_thread_count = element_count;
|
||||
// Get Max threads in all SM
|
||||
int max_pyhsical_threads = context.GetMaxPhysicalThreadCount();
|
||||
int sm = context.GetSMCount();
|
||||
|
||||
// Compute pyhsical threads we need, should small than max sm threads
|
||||
const int physical_thread_count =
|
||||
std::min(max_pyhsical_threads, theory_thread_count);
|
||||
|
||||
// Need get from device
|
||||
const int thread_per_block = std::min(1024, context.GetMaxThreadsPerBlock());
|
||||
// Suppose block count small than factor * sm, factor is a experiments value.
|
||||
int factor = 4;
|
||||
const int block_count =
|
||||
std::min(DivUp(physical_thread_count, thread_per_block), factor * sm);
|
||||
|
||||
GpuLaunchConfig config(threads, blocks);
|
||||
GpuLaunchConfig config;
|
||||
config.theory_thread_count.x = theory_thread_count;
|
||||
config.thread_per_block.x = thread_per_block;
|
||||
config.block_per_grid.x = block_count;
|
||||
return config;
|
||||
}
|
||||
|
||||
inline GpuLaunchConfig GetGpuLaunchConfig2D(
|
||||
const platform::CUDADeviceContext& context, int xdim, int ydim) {
|
||||
PADDLE_ENFORCE_GT(xdim, 0, platform::errors::InvalidArgument(
|
||||
"x dim number should greater than 0,"
|
||||
" but received value is:%d",
|
||||
xdim));
|
||||
PADDLE_ENFORCE_GT(ydim, 0, platform::errors::InvalidArgument(
|
||||
"y dim number should greater than 0,"
|
||||
" but received value is:%d",
|
||||
ydim));
|
||||
|
||||
const int kThreadsPerBlock = 256;
|
||||
int block_cols = std::min(xdim, kThreadsPerBlock);
|
||||
int block_rows = std::max(kThreadsPerBlock / block_cols, 1);
|
||||
|
||||
int max_physical_threads = context.GetMaxPhysicalThreadCount();
|
||||
const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1);
|
||||
|
||||
GpuLaunchConfig config;
|
||||
// Noticed, block size is not align to 32, if needed do it yourself.
|
||||
config.theory_thread_count = dim3(xdim, ydim, 1);
|
||||
config.thread_per_block = dim3(block_cols, block_rows, 1);
|
||||
|
||||
int grid_x = std::min(DivUp(xdim, block_cols), max_blocks);
|
||||
int grid_y = std::min(max_blocks / grid_x, std::max(ydim / block_rows, 1));
|
||||
|
||||
config.block_per_grid = dim3(grid_x, grid_y, 1);
|
||||
return config;
|
||||
}
|
||||
|
||||
// TODO(wangchaochaohu): 3D will add later
|
||||
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
#endif
|
||||
|
@ -1,103 +0,0 @@
|
||||
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
// Used for compute gpu launch parameter
|
||||
|
||||
#pragma once
|
||||
|
||||
#ifdef PADDLE_WITH_CUDA
|
||||
|
||||
#include <cuda_runtime.h>
|
||||
#include <stddef.h>
|
||||
#include <algorithm>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
namespace paddle {
|
||||
namespace platform {
|
||||
|
||||
inline int DivUp(int a, int b) { return (a + b - 1) / b; }
|
||||
|
||||
struct GpuLaunchParamConfig {
|
||||
dim3 theory_thread_count = dim3(0, 0, 0);
|
||||
dim3 thread_per_block = dim3(0, 0, 0);
|
||||
dim3 block_per_grid = dim3(0, 0, 0);
|
||||
};
|
||||
|
||||
inline GpuLaunchParamConfig GetGpuLaunchConfig1D(
|
||||
const platform::CUDADeviceContext& context, int element_count) {
|
||||
PADDLE_ENFORCE_GT(element_count, 0, platform::errors::InvalidArgument(
|
||||
"element count should greater than 0,"
|
||||
" but received value is %d.",
|
||||
element_count));
|
||||
|
||||
const int theory_thread_count = element_count;
|
||||
// Get Max threads in all SM
|
||||
int max_pyhsical_threads = context.GetMaxPhysicalThreadCount();
|
||||
int sm = context.GetSMCount();
|
||||
|
||||
// Compute pyhsical threads we need, should small than max sm threads
|
||||
const int physical_thread_count =
|
||||
std::min(max_pyhsical_threads, theory_thread_count);
|
||||
|
||||
// Need get from device
|
||||
const int thread_per_block = std::min(1024, context.GetMaxThreadsPerBlock());
|
||||
// Suppose block count small than factor * sm, factor is a experiments value.
|
||||
int factor = 4;
|
||||
const int block_count =
|
||||
std::min(DivUp(physical_thread_count, thread_per_block), factor * sm);
|
||||
|
||||
GpuLaunchParamConfig config;
|
||||
config.theory_thread_count.x = theory_thread_count;
|
||||
config.thread_per_block.x = thread_per_block;
|
||||
config.block_per_grid.x = block_count;
|
||||
return config;
|
||||
}
|
||||
|
||||
inline GpuLaunchParamConfig GetGpuLaunchConfig2D(
|
||||
const platform::CUDADeviceContext& context, int xdim, int ydim) {
|
||||
PADDLE_ENFORCE_GT(xdim, 0, platform::errors::InvalidArgument(
|
||||
"x dim number should greater than 0,"
|
||||
" but received value is:%d",
|
||||
xdim));
|
||||
PADDLE_ENFORCE_GT(ydim, 0, platform::errors::InvalidArgument(
|
||||
"y dim number should greater than 0,"
|
||||
" but received value is:%d",
|
||||
ydim));
|
||||
|
||||
const int kThreadsPerBlock = 256;
|
||||
int block_cols = std::min(xdim, kThreadsPerBlock);
|
||||
int block_rows = std::max(kThreadsPerBlock / block_cols, 1);
|
||||
|
||||
int max_physical_threads = context.GetMaxPhysicalThreadCount();
|
||||
const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1);
|
||||
|
||||
GpuLaunchParamConfig config;
|
||||
// Noticed, block size is not align to 32, if needed do it yourself.
|
||||
config.theory_thread_count = dim3(xdim, ydim, 1);
|
||||
config.thread_per_block = dim3(block_cols, block_rows, 1);
|
||||
|
||||
int grid_x = std::min(DivUp(xdim, block_cols), max_blocks);
|
||||
int grid_y = std::min(max_blocks / grid_x, std::max(ydim / block_rows, 1));
|
||||
|
||||
config.block_per_grid = dim3(grid_x, grid_y, 1);
|
||||
return config;
|
||||
}
|
||||
|
||||
// 3D will add later
|
||||
|
||||
} // namespace platform
|
||||
} // namespace paddle
|
||||
|
||||
#endif
|
Loading…
Reference in new issue