commit
477d92bcd2
@ -0,0 +1,73 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/sum_op.h"
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class SumOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto ins = ctx.MultiInput<framework::Tensor>("X");
|
||||||
|
auto *out = ctx.Output<framework::Tensor>("Out");
|
||||||
|
int N = ins.size();
|
||||||
|
|
||||||
|
auto in_dim = ins[0]->dims();
|
||||||
|
|
||||||
|
PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1.");
|
||||||
|
for (int i = 1; i < N; i++) {
|
||||||
|
auto dim = ins[i]->dims();
|
||||||
|
PADDLE_ENFORCE(in_dim == dim, "Input tensors must have same shape");
|
||||||
|
}
|
||||||
|
out->Resize(in_dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SumOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("X", "the input tensors of sum operator.").AsDuplicable();
|
||||||
|
AddOutput("Out", "the output tensor of sum operator.");
|
||||||
|
AddComment(R"DOC(
|
||||||
|
Sum the input tensors.
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class SumGradOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(const framework::InferShapeContext &ctx) const override {
|
||||||
|
auto outputs = ctx.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||||
|
auto dims = ctx.Input<Tensor>(framework::GradVarName("Out"))->dims();
|
||||||
|
for (auto output : outputs) {
|
||||||
|
output->Resize(dims);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP(sum, ops::SumOp, ops::SumOpMaker, sum_grad, ops::SumGradOp);
|
||||||
|
REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel<paddle::platform::CPUPlace, float>);
|
||||||
|
REGISTER_OP_CPU_KERNEL(sum_grad,
|
||||||
|
ops::SumGradKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,18 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/sum_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel<paddle::platform::GPUPlace, float>);
|
||||||
|
REGISTER_OP_GPU_KERNEL(sum_grad,
|
||||||
|
ops::SumGradKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,65 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SumKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto ins = context.MultiInput<Tensor>("X");
|
||||||
|
auto* out = context.Output<Tensor>("Out");
|
||||||
|
out->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
auto result = EigenVector<T>::Flatten(*out);
|
||||||
|
|
||||||
|
int N = ins.size();
|
||||||
|
auto in = EigenVector<T>::Flatten(*(ins[0]));
|
||||||
|
result.device(place) = in;
|
||||||
|
for (int i = 1; i < N; i++) {
|
||||||
|
auto in = EigenVector<T>::Flatten(*(ins[i]));
|
||||||
|
result.device(place) = result + in;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class SumGradKernel : public framework::OpKernel {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* input = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto outs = context.MultiOutput<Tensor>(framework::GradVarName("X"));
|
||||||
|
for (auto out : outs) {
|
||||||
|
out->mutable_data<T>(context.GetPlace());
|
||||||
|
}
|
||||||
|
|
||||||
|
auto place = context.GetEigenDevice<Place>();
|
||||||
|
auto in = EigenVector<T>::Flatten(*input);
|
||||||
|
for (auto out : outs) {
|
||||||
|
auto result = EigenVector<T>::Flatten(*out);
|
||||||
|
result.device(place) = in;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,24 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestSumOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "sum"
|
||||||
|
x0 = np.random.random((3, 4)).astype('float32')
|
||||||
|
x1 = np.random.random((3, 4)).astype('float32')
|
||||||
|
x2 = np.random.random((3, 4)).astype('float32')
|
||||||
|
self.inputs = {"X": {"x0": x0, "x1": x1, "x2": x2}}
|
||||||
|
y = x0 + x1 + x2
|
||||||
|
self.outputs = {'Out': y}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad(["x0"], "Out")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue