Optimize slice trt plugin (#26970)
* optimize slice TRT plugin This patch removes unnecessary barrier for data transfer of needed offset, so data transfer can be overlap with GPU kernel execution. This patch also fixes incorrect name of slice plugin. That is, replaces "layernorm" with "slice" test=develop * add serialize/deserialize to slice plugin * add static shape slice trt plugin * fix slice trt op convertor dynamic shape bug * fix format by clang-format * fix pylint format error * fix problems commented by peiyang Co-authored-by: Ryan Jeng <rjeng@nvidia.com>ut_move_night
parent
cb34cf18c0
commit
47fdc60ecc
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,150 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
from inference_pass_test import InferencePassTest
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.core as core
|
||||
from paddle.fluid.core import AnalysisConfig
|
||||
|
||||
|
||||
#normal starts && ends
|
||||
class SlicePluginTRTTest1(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[3, 3, 3, 3], dtype="float32")
|
||||
axes = [1, 3]
|
||||
starts = [0, 1]
|
||||
ends = [2, 3]
|
||||
slice_out = fluid.layers.slice(
|
||||
data, axes=axes, starts=starts, ends=ends)
|
||||
out = fluid.layers.batch_norm(slice_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random((3, 3, 3, 3)).astype("float32"),
|
||||
}
|
||||
# Diff occurred between GPU and TRT.
|
||||
# In order to provide TRT CI ASAP, this test for trt part
|
||||
# is disabled temporarily.
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = SlicePluginTRTTest1.TensorRTParam(
|
||||
1 << 30, 32, 1, AnalysisConfig.Precision.Float32, False, False)
|
||||
self.fetch_list = [out]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = [False]
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu.append(True)
|
||||
for i in range(len(use_gpu)):
|
||||
self.check_output_with_option(use_gpu[i])
|
||||
|
||||
|
||||
#negative starts && ends
|
||||
class SlicePluginTRTTest2(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[3, 3, 3, 3], dtype="float32")
|
||||
axes = [2, 3]
|
||||
starts = [-3, -2]
|
||||
ends = [-1, 3]
|
||||
slice_out = fluid.layers.slice(
|
||||
data, axes=axes, starts=starts, ends=ends)
|
||||
out = fluid.layers.batch_norm(slice_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random((3, 3, 3, 3)).astype("float32"),
|
||||
}
|
||||
# Diff occurred between GPU and TRT.
|
||||
# In order to provide TRT CI ASAP, this test for trt part
|
||||
# is disabled temporarily.
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = SlicePluginTRTTest2.TensorRTParam(
|
||||
1 << 30, 32, 1, AnalysisConfig.Precision.Float32, False, False)
|
||||
self.fetch_list = [out]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = [False]
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu.append(True)
|
||||
for i in range(len(use_gpu)):
|
||||
self.check_output_with_option(use_gpu[i])
|
||||
|
||||
|
||||
#exceeded bound starts && ends
|
||||
class SlicePluginTRTTest3(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[3, 3, 3, 3], dtype="float32")
|
||||
axes = [2, 3]
|
||||
starts = [-5, -2]
|
||||
ends = [-1, 8]
|
||||
slice_out = fluid.layers.slice(
|
||||
data, axes=axes, starts=starts, ends=ends)
|
||||
out = fluid.layers.batch_norm(slice_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random((3, 3, 3, 3)).astype("float32"),
|
||||
}
|
||||
# Diff occurred between GPU and TRT.
|
||||
# In order to provide TRT CI ASAP, this test for trt part
|
||||
# is disabled temporarily.
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = SlicePluginTRTTest3.TensorRTParam(
|
||||
1 << 30, 32, 1, AnalysisConfig.Precision.Float32, False, False)
|
||||
self.fetch_list = [out]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = [False]
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu.append(True)
|
||||
for i in range(len(use_gpu)):
|
||||
self.check_output_with_option(use_gpu[i])
|
||||
|
||||
|
||||
#fp16
|
||||
class SlicePluginTRTTest4(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[3, 3, 3, 3], dtype="float32")
|
||||
axes = [2, 3]
|
||||
starts = [-5, -2]
|
||||
ends = [-1, 8]
|
||||
slice_out = fluid.layers.slice(
|
||||
data, axes=axes, starts=starts, ends=ends)
|
||||
out = fluid.layers.batch_norm(slice_out, is_test=True)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random((3, 3, 3, 3)).astype("float32"),
|
||||
}
|
||||
# Diff occurred between GPU and TRT.
|
||||
# In order to provide TRT CI ASAP, this test for trt part
|
||||
# is disabled temporarily.
|
||||
self.enable_trt = True
|
||||
self.trt_parameters = SlicePluginTRTTest3.TensorRTParam(
|
||||
1 << 30, 32, 1, AnalysisConfig.Precision.Half, False, False)
|
||||
self.fetch_list = [out]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = [False]
|
||||
if core.is_compiled_with_cuda():
|
||||
use_gpu.append(True)
|
||||
for i in range(len(use_gpu)):
|
||||
self.check_output_with_option(use_gpu[i])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue