Conditional Block Forward (#5530)
* Conditional Block Forward * Assign Operator. Out=X, when type in [LoDTensor/SelectedRows/LoDTensorArray] * Stash * Add Scope::Rename it is useful in gradient phase of an operator with block * ConditionalBlock Grad Done * Add comments * yapf format codemobile_baidu
parent
f07a226a4f
commit
488320a703
@ -0,0 +1,197 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
#include <algorithm>
|
||||
#include "paddle/framework/executor.h"
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
class ConditionalOp : public framework::OperatorBase {
|
||||
public:
|
||||
ConditionalOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: OperatorBase(type, inputs, outputs, attrs) {}
|
||||
|
||||
protected:
|
||||
std::vector<const framework::LoDTensor *> InputTensors(
|
||||
const framework::Scope &scope) const {
|
||||
std::vector<const framework::LoDTensor *> retv;
|
||||
auto xs = Inputs("X");
|
||||
retv.resize(xs.size(), nullptr);
|
||||
std::transform(
|
||||
xs.begin(), xs.end(), retv.begin(),
|
||||
[&scope](const std::string &var_name) -> const framework::LoDTensor * {
|
||||
auto *var = scope.FindVar(var_name);
|
||||
PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", var_name);
|
||||
return &var->Get<framework::LoDTensor>();
|
||||
});
|
||||
return retv;
|
||||
}
|
||||
};
|
||||
|
||||
class ConditionalBlockOp : public ConditionalOp {
|
||||
public:
|
||||
ConditionalBlockOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: ConditionalOp(type, inputs, outputs, attrs) {}
|
||||
void Run(const framework::Scope &scope,
|
||||
const platform::DeviceContext &dev_ctx) const override {
|
||||
auto xs = InputTensors(scope);
|
||||
bool need_run = std::all_of(
|
||||
xs.begin(), xs.end(),
|
||||
[](const framework::LoDTensor *t) { return t->numel() != 0; });
|
||||
|
||||
if (need_run) {
|
||||
auto *scope_var = scope.FindVar(Output("Scope"));
|
||||
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
|
||||
auto *scopes = scope_var->GetMutable<std::vector<framework::Scope *>>();
|
||||
scopes->resize(1);
|
||||
scopes->front() = &scope.NewScope();
|
||||
auto &cur_scope = *scopes->front();
|
||||
|
||||
auto *block = Attr<framework::BlockDescBind *>("block");
|
||||
framework::Executor exec(dev_ctx);
|
||||
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker {
|
||||
public:
|
||||
ConditionalBlockOpProtoMaker(framework::OpProto *proto,
|
||||
framework::OpAttrChecker *op_checker)
|
||||
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||
AddInput("X",
|
||||
"The conditional variable of this operator. If X is empty, the "
|
||||
"whole sub-block will not be executed.")
|
||||
.AsDuplicable();
|
||||
AddInput("Params", "The input variables of the sub-block.").AsDuplicable();
|
||||
AddOutput("Out", "The output variables of the sub-block.").AsDuplicable();
|
||||
AddOutput("Scope",
|
||||
"(std::vector<Scope*>) The step scope of conditional block. To "
|
||||
"unify the conditional block, rnn and while op, the type of "
|
||||
"scope is std::vector<Scope*>");
|
||||
AddAttr<framework::BlockDescBind *>(
|
||||
"block", "The step block of conditional block operator");
|
||||
AddComment(R"DOC(Conditional block operator
|
||||
|
||||
Run the sub-block if X is not empty. Params is the other inputs and Out is the
|
||||
outputs of the sub-block.
|
||||
)DOC");
|
||||
}
|
||||
};
|
||||
|
||||
class ConditionalBlockGradOp : public ConditionalOp {
|
||||
public:
|
||||
ConditionalBlockGradOp(const std::string &type,
|
||||
const framework::VariableNameMap &inputs,
|
||||
const framework::VariableNameMap &outputs,
|
||||
const framework::AttributeMap &attrs)
|
||||
: ConditionalOp(type, inputs, outputs, attrs) {}
|
||||
void Run(const framework::Scope &scope,
|
||||
const platform::DeviceContext &dev_ctx) const override {
|
||||
auto xs = this->InputTensors(scope);
|
||||
bool need_run = std::all_of(
|
||||
xs.begin(), xs.end(),
|
||||
[](const framework::LoDTensor *t) { return t->numel() != 0; });
|
||||
|
||||
if (need_run) {
|
||||
auto *scope_var = scope.FindVar(Input("Scope"));
|
||||
PADDLE_ENFORCE(scope_var != nullptr, "Must set scope");
|
||||
auto &scopes = scope_var->Get<std::vector<framework::Scope *>>();
|
||||
framework::Scope &cur_scope = *scopes[0];
|
||||
|
||||
auto *block = Attr<framework::BlockDescBind *>("block");
|
||||
framework::Executor exec(dev_ctx);
|
||||
exec.Run(*block->Program(), &cur_scope, block->ID(), false);
|
||||
|
||||
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("Params"),
|
||||
Outputs(framework::GradVarName("Params")));
|
||||
|
||||
AssignLocalGradientToGlobal(dev_ctx, cur_scope, Inputs("X"),
|
||||
Outputs(framework::GradVarName("X")));
|
||||
}
|
||||
}
|
||||
|
||||
private:
|
||||
void AssignLocalGradientToGlobal(
|
||||
const platform::DeviceContext &dev_ctx, const framework::Scope &cur_scope,
|
||||
const std::vector<std::string> &p_names,
|
||||
const std::vector<std::string> &pg_names) const {
|
||||
for (size_t i = 0; i < p_names.size(); ++i) {
|
||||
auto out_grad_name = pg_names[i];
|
||||
auto in_grad_name = framework::GradVarName(p_names[i]);
|
||||
auto *in_var = cur_scope.FindVar(in_grad_name);
|
||||
if (in_var == nullptr) {
|
||||
continue;
|
||||
}
|
||||
auto new_in_grad_name = cur_scope.Rename(in_grad_name);
|
||||
auto assign =
|
||||
framework::OpRegistry::CreateOp("assign", {{"X", {new_in_grad_name}}},
|
||||
{{"Out", {out_grad_name}}}, {});
|
||||
assign->Run(cur_scope, dev_ctx);
|
||||
cur_scope.Rename(new_in_grad_name, in_grad_name);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
class ConditionalBlockGradInferShape : public framework::InferShapeBase {
|
||||
public:
|
||||
void operator()(framework::InferShapeContext *context) const override {
|
||||
PADDLE_ENFORCE(context->HasInputs("X"));
|
||||
if (context->HasInputs("Params")) {
|
||||
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("Params")));
|
||||
context->SetOutputsDim(framework::GradVarName("Params"),
|
||||
context->GetInputsDim("Params"));
|
||||
}
|
||||
PADDLE_ENFORCE(context->HasOutputs(framework::GradVarName("X")));
|
||||
context->SetOutputsDim(framework::GradVarName("X"),
|
||||
context->GetInputsDim("X"));
|
||||
}
|
||||
};
|
||||
|
||||
class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker {
|
||||
public:
|
||||
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
||||
|
||||
protected:
|
||||
std::unique_ptr<framework::OpDescBind> Apply() const override {
|
||||
auto grad_op = new framework::OpDescBind();
|
||||
grad_op->SetType("conditional_block_grad");
|
||||
grad_op->SetInput("X", Input("X"));
|
||||
grad_op->SetInput("Params", Input("Params"));
|
||||
grad_op->SetInput("Out", Output("Out"));
|
||||
grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));
|
||||
grad_op->SetInput("Scope", Output("Scope"));
|
||||
grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
||||
grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params"));
|
||||
grad_op->SetBlockAttr("block", *this->grad_block_[0]);
|
||||
return std::unique_ptr<framework::OpDescBind>(grad_op);
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
REGISTER_OPERATOR(conditional_block, ops::ConditionalBlockOp,
|
||||
ops::ConditionalBlockOpProtoMaker,
|
||||
ops::ConditionalBlockGradMaker);
|
||||
REGISTER_OPERATOR(conditional_block_grad, ops::ConditionalBlockGradOp,
|
||||
ops::ConditionalBlockGradInferShape);
|
@ -0,0 +1,40 @@
|
||||
import unittest
|
||||
import paddle.v2.framework.layers as layers
|
||||
import paddle.v2.framework.core as core
|
||||
from paddle.v2.framework.framework import g_startup_program, g_main_program
|
||||
from paddle.v2.framework.executor import Executor
|
||||
from paddle.v2.framework.backward import append_backward_ops
|
||||
import numpy
|
||||
|
||||
|
||||
class ConditionalBlock(unittest.TestCase):
|
||||
def test_forward(self):
|
||||
data = layers.data(name='X', shape=[1], data_type='float32')
|
||||
data.stop_gradient = False
|
||||
cond = layers.ConditionalBlock(inputs=[data])
|
||||
out = layers.create_tensor(dtype='float32')
|
||||
with cond.block():
|
||||
hidden = layers.fc(input=data, size=10)
|
||||
layers.assign(hidden, out)
|
||||
|
||||
cpu = core.CPUPlace()
|
||||
exe = Executor(cpu)
|
||||
exe.run(g_startup_program)
|
||||
|
||||
x = core.LoDTensor()
|
||||
x.set(numpy.random.random(size=(10, 1)).astype('float32'), cpu)
|
||||
|
||||
outs = map(numpy.array, exe.run(feed={'X': x}, fetch_list=[out]))[0]
|
||||
print outs
|
||||
loss = layers.mean(x=out)
|
||||
append_backward_ops(loss=loss)
|
||||
outs = map(numpy.array,
|
||||
exe.run(feed={'X': x},
|
||||
fetch_list=[
|
||||
g_main_program.block(0).var(data.name + "@GRAD")
|
||||
]))[0]
|
||||
print outs
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue