parent
dfb2121967
commit
48d9fd08e5
@ -1,55 +0,0 @@
|
|||||||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import print_function
|
|
||||||
|
|
||||||
import paddle.fluid as fluid
|
|
||||||
import unittest
|
|
||||||
from ir_memory_optimize_net_base import TestIrMemOptBase
|
|
||||||
from paddle.fluid.layers.control_flow import ConditionalBlock
|
|
||||||
|
|
||||||
|
|
||||||
def lstm_net(data,
|
|
||||||
label,
|
|
||||||
dict_dim,
|
|
||||||
emb_dim=128,
|
|
||||||
hid_dim=128,
|
|
||||||
hid_dim2=96,
|
|
||||||
class_dim=2,
|
|
||||||
emb_lr=30.0):
|
|
||||||
emb = fluid.layers.embedding(
|
|
||||||
input=data,
|
|
||||||
size=[dict_dim, emb_dim],
|
|
||||||
param_attr=fluid.ParamAttr(learning_rate=emb_lr))
|
|
||||||
fc0 = fluid.layers.fc(input=emb, size=hid_dim * 4)
|
|
||||||
|
|
||||||
lstm_h, c = fluid.layers.dynamic_lstm(
|
|
||||||
input=fc0, size=hid_dim * 4, is_reverse=False)
|
|
||||||
lstm_max = fluid.layers.sequence_pool(input=lstm_h, pool_type='max')
|
|
||||||
lstm_max_tanh = fluid.layers.tanh(lstm_max)
|
|
||||||
fc1 = fluid.layers.fc(input=lstm_max_tanh, size=hid_dim2, act='tanh')
|
|
||||||
prediction = fluid.layers.fc(input=fc1, size=class_dim, act='softmax')
|
|
||||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
||||||
avg_cost = fluid.layers.mean(x=cost)
|
|
||||||
return avg_cost
|
|
||||||
|
|
||||||
|
|
||||||
class TestIrMemOptRNN(TestIrMemOptBase):
|
|
||||||
def setUp(self):
|
|
||||||
self.network = lstm_net
|
|
||||||
self.iter = 2
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
unittest.main()
|
|
Loading…
Reference in new issue