Merge pull request #4565 from kavyasrinet/rmsprop
Adding the implementation for rmsprop operatorrevert-4814-Add_sequence_project_op
commit
48f98a6770
@ -0,0 +1,120 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/operators/rmsprop_op.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
class RmspropOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
void InferShape(framework::InferShapeContextBase *ctx) const override {
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Param"),
|
||||||
|
"Input(Param) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("MeanSquare"),
|
||||||
|
"Input(MeanSquare) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("LearningRate"),
|
||||||
|
"Input(LearningRate) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Grad"),
|
||||||
|
"Input(Grad) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasInput("Moment"),
|
||||||
|
"Input(Moment) of RmspropOp should not be null.");
|
||||||
|
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("ParamOut"),
|
||||||
|
"Output(param_out) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("MomentOut"),
|
||||||
|
"Output(Momentum_out) of RmspropOp should not be null.");
|
||||||
|
PADDLE_ENFORCE(ctx->HasOutput("MeanSquareOut"),
|
||||||
|
"Output(MeanSquareOut) of RmspropOp should not be null.");
|
||||||
|
|
||||||
|
auto param_dim = ctx->GetInputDim("Param");
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
param_dim, ctx->GetInputDim("Grad"),
|
||||||
|
"Param and grad input of RmspropOp should have the same dimension.");
|
||||||
|
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("Moment"),
|
||||||
|
"Param and Momentum input of RmspropOp "
|
||||||
|
"should have the same dimension.");
|
||||||
|
PADDLE_ENFORCE_EQ(param_dim, ctx->GetInputDim("MeanSquare"),
|
||||||
|
"Param and Momentum input of RmspropOp "
|
||||||
|
"should have the same dimension.");
|
||||||
|
|
||||||
|
auto lr_dim = ctx->GetInputDim("LearningRate");
|
||||||
|
PADDLE_ENFORCE_EQ(framework::product(lr_dim), 1,
|
||||||
|
"Learning Rate should be a scalar.");
|
||||||
|
|
||||||
|
ctx->SetOutputDim("ParamOut", param_dim);
|
||||||
|
ctx->SetOutputDim("MomentOut", param_dim);
|
||||||
|
ctx->SetOutputDim("MeanSquareOut", param_dim);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
class RmspropOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
RmspropOpMaker(framework::OpProto *proto,
|
||||||
|
framework::OpAttrChecker *op_checker)
|
||||||
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
||||||
|
AddInput("Param",
|
||||||
|
"(Tensor, default Tensor<float>) "
|
||||||
|
"Input parameter value that has to be updated");
|
||||||
|
AddInput("MeanSquare",
|
||||||
|
"(Tensor, default Tensor<float>)"
|
||||||
|
" The mean square value that gets updated");
|
||||||
|
AddInput("LearningRate",
|
||||||
|
"(Tensor, default Tensor<float>) "
|
||||||
|
"The learning rate should be a tensor of size 1");
|
||||||
|
AddInput("Grad",
|
||||||
|
"(Tensor, default Tensor<float>) "
|
||||||
|
"Input gradient of the parameter");
|
||||||
|
AddInput("Moment",
|
||||||
|
"(Tensor, default Tensor<float>) The moment that gets updated");
|
||||||
|
|
||||||
|
AddOutput("ParamOut", "(Tensor) Output updated parameter value");
|
||||||
|
AddOutput("MomentOut", "(Tensor) Output updated moment");
|
||||||
|
AddOutput("MeanSquareOut", "(Tensor) Output Mean squared updated value");
|
||||||
|
|
||||||
|
AddAttr<float>("epsilon",
|
||||||
|
"(float, default 1e-10) Constant "
|
||||||
|
"for numerical stability.")
|
||||||
|
.SetDefault(1.0e-10f);
|
||||||
|
AddAttr<float>("decay",
|
||||||
|
"(float, default 0.9) "
|
||||||
|
"Discounting factor for coming gradient.")
|
||||||
|
.SetDefault(0.9f);
|
||||||
|
AddAttr<float>("momentum", "(float, default 0.0) Constant value")
|
||||||
|
.SetDefault(0.0f);
|
||||||
|
AddComment(R"DOC(
|
||||||
|
|
||||||
|
RMSprop
|
||||||
|
|
||||||
|
MeanSquareOut = decay * MeanSquare + (1 - decay) * Grad * Grad
|
||||||
|
MomentOut = momentum * Moment +
|
||||||
|
LearningRate * Grad / sqrt(MeanSquareOut + epsilon)
|
||||||
|
ParamOut = Param - MomentOut
|
||||||
|
|
||||||
|
The original slides that proposed RMSprop: Slide 29 of
|
||||||
|
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf)
|
||||||
|
|
||||||
|
)DOC");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker);
|
||||||
|
REGISTER_OP_CPU_KERNEL(rmsprop,
|
||||||
|
ops::RmspropOpKernel<paddle::platform::CPUPlace, float>);
|
@ -0,0 +1,20 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#define EIGEN_USE_GPU
|
||||||
|
#include "paddle/operators/rmsprop_op.h"
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
REGISTER_OP_GPU_KERNEL(rmsprop,
|
||||||
|
ops::RmspropOpKernel<paddle::platform::GPUPlace, float>);
|
@ -0,0 +1,67 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/framework/eigen.h"
|
||||||
|
#include "paddle/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
template <typename T, int MajorType = Eigen::RowMajor,
|
||||||
|
typename IndexType = Eigen::DenseIndex>
|
||||||
|
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
|
||||||
|
|
||||||
|
template <typename Place, typename T>
|
||||||
|
class RmspropOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* param_out = ctx.Output<Tensor>("ParamOut");
|
||||||
|
auto* moment_out = ctx.Output<Tensor>("MomentOut");
|
||||||
|
auto* mean_square_out = ctx.Output<Tensor>("MeanSquareOut");
|
||||||
|
|
||||||
|
auto grad = ctx.Input<Tensor>("Grad");
|
||||||
|
|
||||||
|
param_out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
moment_out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
mean_square_out->mutable_data<T>(ctx.GetPlace());
|
||||||
|
|
||||||
|
float epsilon = ctx.Attr<float>("epsilon");
|
||||||
|
float rho = ctx.Attr<float>("decay");
|
||||||
|
float momentum = ctx.Attr<float>("momentum");
|
||||||
|
|
||||||
|
auto p = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Param"));
|
||||||
|
auto ms = EigenVector<T>::Flatten(*ctx.Input<Tensor>("MeanSquare"));
|
||||||
|
auto lr = EigenVector<T>::Flatten(*ctx.Input<Tensor>("LearningRate"));
|
||||||
|
auto g = EigenVector<T>::Flatten(*grad);
|
||||||
|
auto mom = EigenVector<T>::Flatten(*ctx.Input<Tensor>("Moment"));
|
||||||
|
|
||||||
|
auto p_out = EigenVector<T>::Flatten(*param_out);
|
||||||
|
auto mom_out = EigenVector<T>::Flatten(*moment_out);
|
||||||
|
auto ms_out = EigenVector<T>::Flatten(*mean_square_out);
|
||||||
|
auto place = ctx.GetEigenDevice<Place>();
|
||||||
|
|
||||||
|
Eigen::DSizes<int, 1> grad_dsize(grad->numel());
|
||||||
|
|
||||||
|
ms_out.device(place) = rho * ms + (1 - rho) * g * g;
|
||||||
|
mom_out.device(place) =
|
||||||
|
momentum * mom +
|
||||||
|
lr.broadcast(grad_dsize) * g / (ms_out + epsilon).sqrt();
|
||||||
|
p_out.device(place) = p - mom_out;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,89 @@
|
|||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestRmspropOp1(OpTest):
|
||||||
|
''' Test RMSProp with explicit inputs
|
||||||
|
'''
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "rmsprop"
|
||||||
|
|
||||||
|
param = np.random.random((123, 321)).astype("float32")
|
||||||
|
mean_square = np.random.random((123, 321)).astype("float32")
|
||||||
|
learning_rate = np.array([0.01]).astype("float32")
|
||||||
|
grad = np.random.random((123, 321)).astype("float32")
|
||||||
|
moment = np.zeros((123, 321)).astype("float32")
|
||||||
|
|
||||||
|
epsilon = 1e-6
|
||||||
|
decay = 0.9
|
||||||
|
momentum = 0.0
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
'Param': param,
|
||||||
|
'MeanSquare': mean_square,
|
||||||
|
'LearningRate': learning_rate,
|
||||||
|
'Grad': grad,
|
||||||
|
'Moment': moment,
|
||||||
|
}
|
||||||
|
|
||||||
|
self.attrs = {'epsilon': epsilon, 'decay': decay, 'momentum': momentum}
|
||||||
|
|
||||||
|
ms_out = decay * mean_square + (1 - decay) * grad * grad
|
||||||
|
moment_out = momentum * moment + \
|
||||||
|
learning_rate * grad / np.sqrt(ms_out + epsilon)
|
||||||
|
param_out = param - moment_out
|
||||||
|
|
||||||
|
self.outputs = {
|
||||||
|
'ParamOut': param_out,
|
||||||
|
'MomentOut': moment_out,
|
||||||
|
'MeanSquareOut': ms_out
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
class TestRmspropOp2(OpTest):
|
||||||
|
'''Test RMSProp with defaukt values for attributes
|
||||||
|
'''
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "rmsprop"
|
||||||
|
|
||||||
|
param = np.random.random((123, 321)).astype("float32")
|
||||||
|
mean_square = np.random.random((123, 321)).astype("float32")
|
||||||
|
learning_rate = np.array([0.01]).astype("float32")
|
||||||
|
grad = np.random.random((123, 321)).astype("float32")
|
||||||
|
moment = np.zeros((123, 321)).astype("float32")
|
||||||
|
|
||||||
|
epsilon = 1.0e-10
|
||||||
|
decay = 0.9
|
||||||
|
momentum = 0.0
|
||||||
|
|
||||||
|
self.inputs = {
|
||||||
|
'Param': param,
|
||||||
|
'MeanSquare': mean_square,
|
||||||
|
'LearningRate': learning_rate,
|
||||||
|
'Grad': grad,
|
||||||
|
'Moment': moment,
|
||||||
|
}
|
||||||
|
|
||||||
|
ms_out = decay * mean_square + (1 - decay) * grad * grad
|
||||||
|
moment_out = momentum * moment + \
|
||||||
|
learning_rate * grad / np.sqrt(ms_out + epsilon)
|
||||||
|
param_out = param - moment_out
|
||||||
|
|
||||||
|
self.outputs = {
|
||||||
|
'ParamOut': param_out,
|
||||||
|
'MomentOut': moment_out,
|
||||||
|
'MeanSquareOut': ms_out
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue