|
|
|
@ -14,6 +14,8 @@
|
|
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -53,5 +55,55 @@ class TestLargeTensor(TestSizeOp):
|
|
|
|
|
self.shape = [2**10]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestSizeAPI(unittest.TestCase):
|
|
|
|
|
def test_size_static(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
shape1 = [2, 1, 4, 5]
|
|
|
|
|
shape2 = [1, 4, 5]
|
|
|
|
|
x_1 = paddle.fluid.data(shape=shape1, dtype='int32', name='x_1')
|
|
|
|
|
x_2 = paddle.fluid.data(shape=shape2, dtype='int32', name='x_2')
|
|
|
|
|
input_1 = np.random.random(shape1).astype("int32")
|
|
|
|
|
input_2 = np.random.random(shape2).astype("int32")
|
|
|
|
|
out_1 = paddle.fluid.layers.size(x_1)
|
|
|
|
|
out_2 = paddle.fluid.layers.size(x_2)
|
|
|
|
|
exe = paddle.static.Executor(place=paddle.CPUPlace())
|
|
|
|
|
res_1, res_2 = exe.run(feed={
|
|
|
|
|
"x_1": input_1,
|
|
|
|
|
"x_2": input_2,
|
|
|
|
|
},
|
|
|
|
|
fetch_list=[out_1, out_2])
|
|
|
|
|
assert (np.array_equal(
|
|
|
|
|
res_1, np.array([np.size(input_1)]).astype("int64")))
|
|
|
|
|
assert (np.array_equal(
|
|
|
|
|
res_2, np.array([np.size(input_2)]).astype("int64")))
|
|
|
|
|
|
|
|
|
|
def test_size_imperative(self):
|
|
|
|
|
paddle.disable_static(paddle.CPUPlace())
|
|
|
|
|
input_1 = np.random.random([2, 1, 4, 5]).astype("int32")
|
|
|
|
|
input_2 = np.random.random([1, 4, 5]).astype("int32")
|
|
|
|
|
x_1 = paddle.to_tensor(input_1)
|
|
|
|
|
x_2 = paddle.to_tensor(input_2)
|
|
|
|
|
out_1 = paddle.fluid.layers.size(x_1)
|
|
|
|
|
out_2 = paddle.fluid.layers.size(x_2)
|
|
|
|
|
assert (np.array_equal(out_1.numpy().item(0), np.size(input_1)))
|
|
|
|
|
assert (np.array_equal(out_2.numpy().item(0), np.size(input_2)))
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
|
|
|
|
|
def test_error(self):
|
|
|
|
|
main_program = fluid.Program()
|
|
|
|
|
startup_program = fluid.Program()
|
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
|
|
|
|
|
|
|
|
def test_x_type():
|
|
|
|
|
shape = [1, 4, 5]
|
|
|
|
|
input_1 = np.random.random(shape).astype("int32")
|
|
|
|
|
out_1 = paddle.fluid.layers.size(input_1)
|
|
|
|
|
|
|
|
|
|
self.assertRaises(TypeError, test_x_type)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
paddle.enable_static()
|
|
|
|
|
unittest.main()
|
|
|
|
|