|
|
|
@ -20,19 +20,35 @@ from op_test import OpTest
|
|
|
|
|
class TestConcatOp(OpTest):
|
|
|
|
|
def setUp(self):
|
|
|
|
|
self.op_type = "concat"
|
|
|
|
|
x0 = np.random.random((2, 1, 4, 5)).astype('float32')
|
|
|
|
|
x1 = np.random.random((2, 2, 4, 5)).astype('float32')
|
|
|
|
|
x2 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
|
|
|
axis = 1
|
|
|
|
|
self.inputs = {'X': [('x0', x0), ('x1', x1), ('x2', x2)]}
|
|
|
|
|
self.attrs = {'axis': axis}
|
|
|
|
|
self.outputs = {'Out': np.concatenate((x0, x1, x2), axis=axis)}
|
|
|
|
|
self.init_test_data()
|
|
|
|
|
self.inputs = {'X': [('x0', self.x0), ('x1', self.x1), ('x2', self.x2)]}
|
|
|
|
|
self.attrs = {'axis': self.axis}
|
|
|
|
|
self.outputs = {
|
|
|
|
|
'Out': np.concatenate(
|
|
|
|
|
(self.x0, self.x1, self.x2), axis=self.axis)
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
|
|
def test_check_grad(self):
|
|
|
|
|
self.check_grad(['x0'], 'Out')
|
|
|
|
|
self.check_grad(['x1'], 'Out')
|
|
|
|
|
self.check_grad(['x2'], 'Out')
|
|
|
|
|
|
|
|
|
|
def init_test_data(self):
|
|
|
|
|
self.x0 = np.random.random((2, 1, 4, 5)).astype('float32')
|
|
|
|
|
self.x1 = np.random.random((2, 2, 4, 5)).astype('float32')
|
|
|
|
|
self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
|
|
|
self.axis = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TestConcatOp2(OpTest):
|
|
|
|
|
def init_test_data(self):
|
|
|
|
|
self.x0 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
|
|
|
self.x1 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
|
|
|
self.x2 = np.random.random((2, 3, 4, 5)).astype('float32')
|
|
|
|
|
self.axis = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|