Merge pull request #7574 from lcy-seso/wraper_for_l2_normalize
add python wrapper for l2 normalize layer.add_depthwiseConv_op_gpu
commit
4b3e22b865
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,95 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||
#
|
||||
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||
#you may not use this file except in compliance with the License.
|
||||
#You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
#Unless required by applicable law or agreed to in writing, software
|
||||
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
#See the License for the specific language governing permissions and
|
||||
#limitations under the License.
|
||||
import unittest
|
||||
import paddle.v2.fluid as fluid
|
||||
import paddle.v2.fluid.core as core
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TestNormalization(unittest.TestCase):
|
||||
data_desc = {"name": "input", "shape": (2, 3, 7)}
|
||||
|
||||
def gen_random_input(self):
|
||||
"""Generate random input data.
|
||||
"""
|
||||
self.data = np.random.random(
|
||||
size=self.data_desc["shape"]).astype("float32")
|
||||
|
||||
def set_program(self, axis, epsilon):
|
||||
"""Build the test program.
|
||||
"""
|
||||
data = fluid.layers.data(
|
||||
name=self.data_desc["name"],
|
||||
shape=self.data_desc["shape"],
|
||||
dtype="float32",
|
||||
append_batch_size=False)
|
||||
data.stop_gradient = False
|
||||
l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon)
|
||||
out = fluid.layers.reduce_sum(l2_norm, dim=None)
|
||||
|
||||
fluid.backward.append_backward(loss=out)
|
||||
self.fetch_list = [l2_norm]
|
||||
|
||||
def run_program(self):
|
||||
"""Run the test program.
|
||||
"""
|
||||
places = [core.CPUPlace()]
|
||||
if core.is_compile_gpu():
|
||||
places.append(core.CUDAPlace(0))
|
||||
|
||||
for place in places:
|
||||
self.set_inputs(place)
|
||||
exe = fluid.Executor(place)
|
||||
|
||||
output = exe.run(fluid.default_main_program(),
|
||||
feed=self.inputs,
|
||||
fetch_list=self.fetch_list,
|
||||
return_numpy=True)
|
||||
self.op_output = output
|
||||
|
||||
def set_inputs(self, place):
|
||||
"""Set the randomly generated data to the test program.
|
||||
"""
|
||||
self.inputs = {}
|
||||
tensor = fluid.Tensor()
|
||||
tensor.set(self.data, place)
|
||||
self.inputs[self.data_desc["name"]] = tensor
|
||||
|
||||
def l2_normalize(self, data, axis, epsilon):
|
||||
""" Compute the groundtruth.
|
||||
"""
|
||||
output = data * np.reciprocal(
|
||||
np.sum(np.square(data), axis=axis, keepdims=True))
|
||||
return output
|
||||
|
||||
def test_l2_normalize(self):
|
||||
""" Test the python wrapper for l2_normalize.
|
||||
"""
|
||||
axis = 1
|
||||
#TODO(caoying) epsilon is not supported due to lack of a maximum_op.
|
||||
epsilon = 1e-6
|
||||
|
||||
self.gen_random_input()
|
||||
|
||||
self.set_program(axis, epsilon)
|
||||
self.run_program()
|
||||
|
||||
expect_output = self.l2_normalize(self.data, axis, epsilon)
|
||||
|
||||
# check output
|
||||
self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue