Merge pull request #7574 from lcy-seso/wraper_for_l2_normalize
add python wrapper for l2 normalize layer.add_depthwiseConv_op_gpu
commit
4b3e22b865
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,95 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
#Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
#you may not use this file except in compliance with the License.
|
||||||
|
#You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
#Unless required by applicable law or agreed to in writing, software
|
||||||
|
#distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
#See the License for the specific language governing permissions and
|
||||||
|
#limitations under the License.
|
||||||
|
import unittest
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
import paddle.v2.fluid.core as core
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
|
class TestNormalization(unittest.TestCase):
|
||||||
|
data_desc = {"name": "input", "shape": (2, 3, 7)}
|
||||||
|
|
||||||
|
def gen_random_input(self):
|
||||||
|
"""Generate random input data.
|
||||||
|
"""
|
||||||
|
self.data = np.random.random(
|
||||||
|
size=self.data_desc["shape"]).astype("float32")
|
||||||
|
|
||||||
|
def set_program(self, axis, epsilon):
|
||||||
|
"""Build the test program.
|
||||||
|
"""
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name=self.data_desc["name"],
|
||||||
|
shape=self.data_desc["shape"],
|
||||||
|
dtype="float32",
|
||||||
|
append_batch_size=False)
|
||||||
|
data.stop_gradient = False
|
||||||
|
l2_norm = fluid.layers.l2_normalize(x=data, axis=axis, epsilon=epsilon)
|
||||||
|
out = fluid.layers.reduce_sum(l2_norm, dim=None)
|
||||||
|
|
||||||
|
fluid.backward.append_backward(loss=out)
|
||||||
|
self.fetch_list = [l2_norm]
|
||||||
|
|
||||||
|
def run_program(self):
|
||||||
|
"""Run the test program.
|
||||||
|
"""
|
||||||
|
places = [core.CPUPlace()]
|
||||||
|
if core.is_compile_gpu():
|
||||||
|
places.append(core.CUDAPlace(0))
|
||||||
|
|
||||||
|
for place in places:
|
||||||
|
self.set_inputs(place)
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
|
||||||
|
output = exe.run(fluid.default_main_program(),
|
||||||
|
feed=self.inputs,
|
||||||
|
fetch_list=self.fetch_list,
|
||||||
|
return_numpy=True)
|
||||||
|
self.op_output = output
|
||||||
|
|
||||||
|
def set_inputs(self, place):
|
||||||
|
"""Set the randomly generated data to the test program.
|
||||||
|
"""
|
||||||
|
self.inputs = {}
|
||||||
|
tensor = fluid.Tensor()
|
||||||
|
tensor.set(self.data, place)
|
||||||
|
self.inputs[self.data_desc["name"]] = tensor
|
||||||
|
|
||||||
|
def l2_normalize(self, data, axis, epsilon):
|
||||||
|
""" Compute the groundtruth.
|
||||||
|
"""
|
||||||
|
output = data * np.reciprocal(
|
||||||
|
np.sum(np.square(data), axis=axis, keepdims=True))
|
||||||
|
return output
|
||||||
|
|
||||||
|
def test_l2_normalize(self):
|
||||||
|
""" Test the python wrapper for l2_normalize.
|
||||||
|
"""
|
||||||
|
axis = 1
|
||||||
|
#TODO(caoying) epsilon is not supported due to lack of a maximum_op.
|
||||||
|
epsilon = 1e-6
|
||||||
|
|
||||||
|
self.gen_random_input()
|
||||||
|
|
||||||
|
self.set_program(axis, epsilon)
|
||||||
|
self.run_program()
|
||||||
|
|
||||||
|
expect_output = self.l2_normalize(self.data, axis, epsilon)
|
||||||
|
|
||||||
|
# check output
|
||||||
|
self.assertTrue(np.allclose(self.op_output, expect_output, atol=0.001))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue