|
|
@ -421,7 +421,7 @@ class UpsamplingNearest2D(layers.Layer):
|
|
|
|
import paddle
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
input_data = paddle.rand(2,3,6,10).astype("float32")
|
|
|
|
input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
|
|
|
|
upsample_out = paddle.nn.UpsamplingNearest2D(size=[12,12])
|
|
|
|
upsample_out = paddle.nn.UpsamplingNearest2D(size=[12,12])
|
|
|
|
input = paddle.to_tensor(input_data)
|
|
|
|
input = paddle.to_tensor(input_data)
|
|
|
|
output = upsample_out(x=input)
|
|
|
|
output = upsample_out(x=input)
|
|
|
@ -498,7 +498,7 @@ class UpsamplingBilinear2D(layers.Layer):
|
|
|
|
import paddle
|
|
|
|
import paddle
|
|
|
|
import paddle.nn as nn
|
|
|
|
import paddle.nn as nn
|
|
|
|
|
|
|
|
|
|
|
|
input_data = paddle.rand(2,3,6,10).astype("float32")
|
|
|
|
input_data = paddle.rand(shape=(2,3,6,10)).astype("float32")
|
|
|
|
upsample_out = paddle.nn.UpsamplingBilinear2D(size=[12,12])
|
|
|
|
upsample_out = paddle.nn.UpsamplingBilinear2D(size=[12,12])
|
|
|
|
input = paddle.to_tensor(input_data)
|
|
|
|
input = paddle.to_tensor(input_data)
|
|
|
|
output = upsample_out(x=input)
|
|
|
|
output = upsample_out(x=input)
|
|
|
|