Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into develop

fix-typo
zchen0211 7 years ago
commit 4e228021bb

@ -0,0 +1,99 @@
# 构建iOS平台上的PaddlePaddle库
交叉编译iOS平台上适用的PaddlePaddle库需要在MacOS系统上进行。本文的将介绍在MacOS上从源码交叉编译iOS平台上适用的PaddlePaddle库。
## 准备交叉编译环境
Apple官方为iOS开发提供了完整的交叉编译工具和集成开发环境用户从App Store下载安装Xcode即可。也可自行前往官网下载[Xcode](https://developer.apple.com/cn/xcode/)。安装完成之后,可在命令行执行`xcodebuild -version`,判断是否安装成功。
```bash
$ xcodebuild -version
Xcode 9.0
Build version 9A235
```
## 配置交叉编译参数
PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake),以提供一些默认的编译器和编译参数配置。
交叉编译iOS版本的PaddlePaddle库时有一些必须配置的参数
- `CMAKE_SYSTEM_NAME`CMake编译的目标平台必须设置为`iOS`。在设置`CMAKE_SYSTEM_NAME=iOS`后PaddlePaddle的CMake系统会自动编译所有的第三方依赖库并且强制设置一些PaddlePaddle参数的值`WITH_C_API=ON`、`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。
- `WITH_C_API`是否编译C-API预测库必须设置为ON。在iOS平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`必须设置为ON。在iOS平台上不支持通过swig调用来训练或者预测。
iOS平台可选配置参数
- `IOS_PLATFORM`,可设置为`OS/SIMULATOR`,默认值为`OS`。
- `OS`,构建目标为`arm`架构的iPhone或者iPad等物理设备。
- `SIMULATOR`,构建目标为`x86`架构的模拟器平台。
- `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示:
| IOS_PLATFORM | IOS_ARCH |
|--------------|----------------------|
| OS | armv7, armv7s, arm64 (默认) |
| SIMULATOR | i386, x86_64 (默认) |
- `IOS_DEPLOYMENT_TARGET`最小的iOS部署版本默认值为`7.0`。
- `IOS_ENABLE_BITCODE`,是否使能[Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3),可设置`ON/OFF`,默认值为`ON`。
- `IOS_USE_VECLIB_FOR_BLAS`,是否使用[vecLib](https://developer.apple.com/documentation/accelerate/veclib)框架进行BLAS矩阵计算可设置`ON/OFF`,默认值为`OFF`。
- `IOS_DEVELOPMENT_ROOT``Developer`目录,可显式指定为`/path/to/platform/Developer`。若未显式指定PaddlePaddle将会根据`IOS_PLATFORM`自动选择`Xcode`对应`platform`的`Developer`目录。
- `IOS_SDK_ROOT`,所使用`SDK`的根目录,可显式指定为`/path/to/platform/Developer/SDKs/SDK`。若未显式指定PaddlePaddle将会自动选择`IOS_DEVELOPMENT_ROOT`目录下最新的`SDK`版本。
其他配置参数:
- `USE_EIGEN_FOR_BLAS`是否使用Eigen库进行矩阵计算在`IOS_USE_VECLIB_FOR_BLAS=OFF`时有效。可设置`ON/OFF`,默认值为`OFF`。
- `HOST_C/CXX_COMPILER`宿主机的C/C++编译器。默认值为环境变量`CC/CXX`的值;若环境变量`CC/CXX`未设置,则使用`cc/c++`编译器。
常用的cmake配置如下
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=OS \
-DIOS_ARCH="arm64" \
-DIOS_ENABLE_BITCODE=ON \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
```bash
cmake -DCMAKE_SYSTEM_NAME=iOS \
-DIOS_PLATFORM=SIMULATOR \
-DIOS_ARCH="x86_64" \
-DIOS_USE_VECLIB_FOR_BLAS=ON \
-DCMAKE_INSTALL_PREFIX=your/path/to/install \
-DWITH_C_API=ON \
-DWITH_TESTING=OFF \
-DWITH_SWIG_PY=OFF \
..
```
用户还可根据自己的需求设置其他编译参数。比如希望最小化生成库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望得到最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。
**性能TIPS**为了达到最快的计算速度在CMake参数配置上有以下建议
- 设置`CMAKE_BUILD_TYPE`为`Release`
- 设置`IOS_USE_VECLIB_FOR_BLAS=ON`,调用`vecLib`框架提供的BLAS函数进行矩阵计算。
## 编译和安装
CMake配置完成后执行以下命令PaddlePaddle将自动下载和编译所有第三方依赖库、编译和安装PaddlePaddle预测库。
```
$ make
$ make install
```
注意如果你曾在源码目录下编译过其他平台的PaddlePaddle库请先使用`rm -rf`命令删除`third_party`目录和`build`目录以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含以下内容:
- `include`目录其中包含所有C-API的头文件
- `lib`目录其中包含PaddlePaddle的C-API静态库
- `third_party`目录,其中包含所依赖的所有第三方库
注意不同架构的PaddlePaddle库建议安装到不同的目录下然后使用`lipo`工具将多个静态库合并成一个支持多个架构的fat库。
自此PaddlePaddle库已经安装完成用户可将合成的fat库用于深度学习相关的iOS App中调用方法见C-API文档。

@ -59,4 +59,4 @@ make install
注意如果你曾经在源码目录下编译过其他平台的PaddlePaddle库请先使用`rm -rf`命令删除`third_party`目录和`build`目录以确保所有的第三方依赖库和PaddlePaddle代码都是针对新的CMake配置重新编译的。
执行完安装命令后,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件`lib`中包含一个Raspberry Pi版本的库。
执行完安装命令后,`your/path/to/install`目录中会包含`include`和`lib`目录,其中`include`中包含C-API的头文件`lib`中包含一个Raspberry Pi版本的库。

@ -44,7 +44,7 @@ cmake -DCMAKE_SYSTEM_NAME=RPi \
..
```
To build the inference library, please set the argument WITH_API to ON: `WITH_C_API=ON`.
To build the inference library, please set the argument WITH\_C\_API to ON: `WITH_C_API=ON`.
You can add more arguments. For example, to minimize the size of the generated inference library, you may use `CMAKE_BUILD_TYPE=MinSizeRel`. For performance optimization, you may use `CMAKE_BUILD_TYPE=Release`.

@ -36,8 +36,8 @@ TEST(LoDTensor, LoDInGPU) {
lod_tensor.mutable_data<float>(place);
lod_tensor.set_lod(src_lod);
CHECK_EQ(lod_tensor.lod_element(0, 2).first, 4UL);
CHECK_EQ(lod_tensor.lod_element(0, 4).first, 8UL);
EXPECT_EQ(lod_tensor.lod_element(0, 2).first, 4UL);
EXPECT_EQ(lod_tensor.lod_element(0, 4).first, 8UL);
auto lod = lod_tensor.lod();
@ -45,6 +45,6 @@ TEST(LoDTensor, LoDInGPU) {
cudaDeviceSynchronize();
for (size_t i = 0; i < src_lod[0].size(); ++i) {
CHECK_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2);
EXPECT_EQ(lod[0].data()[i], src_lod[0].data()[i] * 2);
}
}
}

@ -37,32 +37,32 @@ ExecutionContext::GetEigenDevice<platform::GPUPlace, Eigen::GpuDevice>() const {
std::string OperatorBase::Input(const std::string& name) const {
auto& ins = Inputs(name);
PADDLE_ENFORCE_LE(ins.size(), 1UL,
"Op %s input %s should contain only one variable", type_,
name);
"Operator %s's input %s should contain only one variable.",
type_, name);
return ins.empty() ? kEmptyVarName : ins[0];
}
const std::vector<std::string>& OperatorBase::Inputs(
const std::string& name) const {
auto it = inputs_.find(name);
PADDLE_ENFORCE(it != inputs_.end(), "Op %s do not have input %s", type_,
name);
PADDLE_ENFORCE(it != inputs_.end(), "Operator %s does not have the input %s.",
type_, name);
return it->second;
}
std::string OperatorBase::Output(const std::string& name) const {
auto& outs = Outputs(name);
PADDLE_ENFORCE_LE(outs.size(), 1UL,
"Op %s output %s should contain only one variable", type_,
name);
"Operator %s's output %s should contain only one variable.",
type_, name);
return outs.empty() ? kEmptyVarName : outs[0];
}
const std::vector<std::string>& OperatorBase::Outputs(
const std::string& name) const {
auto it = outputs_.find(name);
PADDLE_ENFORCE(it != outputs_.end(), "Op %s does not have output called %s",
type_, name);
PADDLE_ENFORCE(it != outputs_.end(),
"Operator %s does not have an output called %s.", type_, name);
return it->second;
}

@ -427,7 +427,8 @@ class OperatorWithKernel : public OperatorBase {
int tmp = static_cast<int>(ToDataType(t->type()));
VLOG(3) << "Input " << ipt_name << " with data_type " << tmp;
PADDLE_ENFORCE(tmp == data_type || data_type == -1,
"DataType of Paddle Op %s must be same.", Type());
"DataType of Paddle Op %s must be the same.",
Type());
data_type = tmp;
}
}

@ -118,10 +118,12 @@ class Tensor {
const platform::DeviceContext& ctx);
/**
* @brief Return the slice of the tensor.
* @brief Return a sub-tensor of the given tensor.
*
* @param[in] begin_idx The begin index of the slice.
* @param[in] end_idx The end index of the slice.
* @param[in] begin_idx The index of the start row(inclusive) to slice.
* The index number begins from 0.
* @param[in] end_idx The index of the end row(exclusive) to slice.
* The index number begins from 0.
*/
inline Tensor Slice(const int& begin_idx, const int& end_idx) const;

@ -112,9 +112,10 @@ inline void* Tensor::mutable_data(platform::Place place, std::type_index type) {
if (holder_ != nullptr) {
holder_->set_type(type);
}
PADDLE_ENFORCE_GT(numel(), 0,
"Tensor's numel must be larger than zero to call "
"Tensor::mutable_data. Call Tensor::set_dim first.");
PADDLE_ENFORCE_GT(
numel(), 0,
"When calling this method, the Tensor's numel must be larger than zero. "
"Please check Tensor::Resize has been called first.");
int64_t size = numel() * SizeOfType(type);
/* some versions of boost::variant don't have operator!= */
if (holder_ == nullptr || !(holder_->place() == place) ||
@ -229,10 +230,12 @@ inline void Tensor::CopyFromVector(const std::vector<T>& src,
inline Tensor Tensor::Slice(const int& begin_idx, const int& end_idx) const {
check_memory_size();
PADDLE_ENFORCE_GE(begin_idx, 0, "Slice begin index is less than zero.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "Slice end index is out of bound.");
PADDLE_ENFORCE_LT(begin_idx, end_idx,
"Begin index must be less than end index.");
PADDLE_ENFORCE_GE(begin_idx, 0,
"The start row index must be greater than 0.");
PADDLE_ENFORCE_LE(end_idx, dims_[0], "The end row index is out of bound.");
PADDLE_ENFORCE_LT(
begin_idx, end_idx,
"The start row index must be lesser than the end row index.");
if (dims_[0] == 1) {
return *this;

@ -101,8 +101,10 @@ void CRFLayer::backward(const UpdateCallback& callback) {
: real(1.0f);
instanceWeight *= coeff_;
MatrixPtr grad = output.grad->subRowMatrix(starts[i], starts[i + 1]);
grad->add(*crfs_[i].getXGrad(), real(1.0f), instanceWeight);
if (output.grad) {
MatrixPtr grad = output.grad->subRowMatrix(starts[i], starts[i + 1]);
grad->add(*crfs_[i].getXGrad(), real(1.0f), instanceWeight);
}
if (needWGrad) {
weight_->getWGrad()->add(
*crfs_[i].getWGrad(), real(1.0f), instanceWeight);

@ -102,7 +102,6 @@ real LinearChainCRF::forward(real* x, int* s, int length) {
}
void LinearChainCRF::backward(real* x, int* s, int length, bool needWGrad) {
MatrixPtr matX = Matrix::create(x, length, numClasses_);
Matrix::resizeOrCreate(matGrad_, length, numClasses_);
Matrix::resizeOrCreate(beta_, length, numClasses_);
real* b = b_->getData();

@ -70,11 +70,23 @@ void SequenceReshapeLayer::forward(PassType passType) {
size_t outDim = getSize();
size_t numSequences = input.getNumSequences();
auto startPositions = input.sequenceStartPositions->getVector(false);
const int* starts = startPositions->getData();
CHECK_EQ(starts[numSequences], input.getBatchSize());
CHECK_EQ(numSequences, startPositions->getSize() - 1);
// by default, we assume each instance as a sequence
IVectorPtr seqStarts;
IVector::resizeOrCreate(seqStarts, input.getBatchSize() + 1, false);
int* startsData = seqStarts->getData();
for (int i = 0; i < input.getBatchSize() + 1; i++) {
startsData[i] = i;
}
const int* starts = startsData;
// if there is sequence, then use start positions
if (input.sequenceStartPositions) {
auto startPositions = input.sequenceStartPositions->getVector(false);
starts = startPositions->getData();
CHECK_EQ(starts[numSequences], input.getBatchSize());
CHECK_EQ(numSequences, startPositions->getSize() - 1);
}
for (size_t seqID = 0; seqID < numSequences; seqID++) {
size_t inNumIns = starts[seqID + 1] - starts[seqID];

@ -41,7 +41,16 @@ void* CPUAllocator::Alloc(size_t& index, size_t size) {
index = 0; // unlock memory
void* p = malloc(size);
void* p;
#ifdef PADDLE_USE_MKLDNN
// refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp
// memory alignment
PADDLE_ENFORCE_EQ(posix_memalign(&p, 4096ul, size), 0);
#else
PADDLE_ENFORCE_EQ(posix_memalign(&p, 32ul, size), 0);
#endif
PADDLE_ENFORCE(p, "Fail to allocate CPU memory: size = %d .", size);
if (p != nullptr) {
if (FLAGS_use_pinned_memory) {

@ -28,8 +28,9 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
auto x_dims = ctx->GetInputDim("X");
auto label_dims = ctx->GetInputDim("Label");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
"Input(Label)'s rank should be 2.");
PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
"The 1st dimension of Input(X) and Input(Label) should "
"be equal.");
@ -38,8 +39,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
"If Attr(soft_label) == true, the 2nd dimension of "
"Input(X) and Input(Label) should be equal.");
} else {
PADDLE_ENFORCE_EQ(label_dims[1], 1,
"If Attr(soft_label) == false, the 2nd dimension of "
PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
"If Attr(softLabel) == false, the 2nd dimension of "
"Input(Label) should be 1.");
}
@ -48,7 +49,8 @@ class CrossEntropyOp : public framework::OperatorWithKernel {
}
protected:
// CrossEntropy's data type just determined by "X"
// Explicitly set that data type of the output of the cross_entropy operator
// is determined by its input "X".
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(ctx.Input<Tensor>("X")->type());

File diff suppressed because it is too large Load Diff

@ -0,0 +1,26 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/linear_chain_crf_op.h"
namespace ops = paddle::operators;
REGISTER_OP_GPU_KERNEL(
linear_chain_crf,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFOpKernel<paddle::platform::GPUPlace, double>);
REGISTER_OP_GPU_KERNEL(
linear_chain_crf_grad,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, float>,
ops::LinearChainCRFGradOpKernel<paddle::platform::GPUPlace, double>);

File diff suppressed because it is too large Load Diff

@ -21,7 +21,6 @@ class LSTMOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of LSTM should not be null.");
@ -29,9 +28,13 @@ class LSTMOp : public framework::OperatorWithKernel {
"Output(Hidden) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Cell"),
"Output(Cell) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
"Output(BatchGate) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
"Output(BatchGate) of LSTM should not be null.");
auto x_dims = ctx->GetInputDim("Input");
PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank must be 2.");
auto in_dims = ctx->GetInputDim("Input");
PADDLE_ENFORCE_EQ(in_dims.size(), 2, "Input(X)'s rank must be 2.");
if (ctx->HasInput("H0")) {
PADDLE_ENFORCE(ctx->HasInput("C0"),
@ -44,7 +47,7 @@ class LSTMOp : public framework::OperatorWithKernel {
"should be the same.");
}
int frame_size = x_dims[1] / 4;
int frame_size = in_dims[1] / 4;
auto w_dims = ctx->GetInputDim("Weight");
PADDLE_ENFORCE_EQ(w_dims.size(), 2,
"The rank of Input(Weight) should be 2.");
@ -71,12 +74,21 @@ class LSTMOp : public framework::OperatorWithKernel {
"4 * %d if disable peepholes connection",
frame_size);
}
ctx->SetOutputDim("Hidden", {x_dims[0], frame_size});
ctx->SetOutputDim("Cell", {x_dims[0], frame_size});
ctx->SetOutputDim("BatchGate", x_dims);
framework::DDim out_dims({in_dims[0], frame_size});
ctx->SetOutputDim("Hidden", out_dims);
ctx->SetOutputDim("Cell", out_dims);
ctx->SetOutputDim("BatchGate", in_dims);
ctx->SetOutputDim("BatchCellPreAct", out_dims);
ctx->ShareLoD("Input", "Hidden");
ctx->ShareLoD("Input", "Cell");
}
protected:
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(
ctx.Input<framework::LoDTensor>("Input")->type());
}
};
class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
@ -86,16 +98,18 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
AddInput("Input",
"(LoDTensor) the first input is a LodTensor, which support "
"variable-time length input sequence. The underlying tensor in "
"this LoDTensor is a matrix with shape (T X 4D), where, T is the "
"this LoDTensor is a matrix with shape (T X 4D), where T is the "
"total time steps in this mini-batch, D is the hidden size.");
AddInput("H0",
"(Tensor, optional) the initial hidden state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size.");
"batch size, D is the hidden size.")
.AsDispensable();
AddInput("C0",
"(Tensor, optional) the initial cell state is an optional "
"input. This is a tensor with shape (N x D), where N is the "
"batch size. `H0` and `C0` can be NULL but only at the same time");
"batch size. `H0` and `C0` can be NULL but only at the same time")
.AsDispensable();
AddInput("Weight",
"(Tensor) the learnable hidden-hidden weights."
" - The shape is (D x 4D), where D is the hidden size. "
@ -109,22 +123,27 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker {
" - Bias = {b_c, b_i, b_f, b_o}."
"2. `usePeepholes = True` "
" - The shape is (1 x 7D). "
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
" - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.")
.AsDispensable();
AddOutput("Hidden",
"(LoDTensor) the hidden state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("Cell",
"(LoDTensor) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`.");
AddOutput("BatchGate",
"(LoDTensor) This LoDTensor contains input gate, forget gate "
"and output gate after the nonlinear computation. This "
"LoDTensor has the same shape with the reorganized input, which "
"was also be called batch input. The LoD size is 2. The first "
"is also be called batch input. The LoD size is 2. The first "
"LoD is the batch offsets and the second LoD contains the "
"indexes, which denote the position of reorganized sequence "
"in the raw input.")
.AsIntermediate();
AddOutput("Hidden",
"(LoDTensor) the hidden state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`.");
AddOutput("Cell",
"(LoDTensor) the cell state lod tensor of LSTM operator. "
"The shape and lod is the same with the `Input`.");
AddOutput("BatchCellPreAct",
"(LoDTensor) This LoDTensor is got in the forward and used "
"in the backward.")
.AsIntermediate();
AddAttr<bool>("usePeepholes",
"(bool, defalut: True) "
"whether to enable diagonal/peephole connections.")
@ -202,15 +221,37 @@ class LSTMGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(framework::InferShapeContext* ctx) const override {
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Hidden")),
"Input(Hidden@GRAD) should not be null");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Cell")),
"Input(Cell@GRAD) should not be null");
ctx->SetOutputDim(framework::GradVarName("Weight"),
ctx->GetInputDim("Weight"));
ctx->SetOutputDim(framework::GradVarName("Bias"), ctx->GetInputDim("Bias"));
PADDLE_ENFORCE(ctx->HasInput("Input"),
"Input(Input) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Hidden"),
"Input(Hidden) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Cell"),
"Input(Cell) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
"Input(BatchGate) of LSTM should not be null.");
PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
"Input(BatchGate) of LSTM should not be null.");
auto in_g_name = framework::GradVarName("Input");
if (ctx->HasOutput(in_g_name))
ctx->SetOutputDim(in_g_name, ctx->GetInputDim("Input"));
auto w_g_name = framework::GradVarName("Weight");
if (ctx->HasOutput(w_g_name))
ctx->SetOutputDim(w_g_name, ctx->GetInputDim("Weight"));
auto b_g_name = framework::GradVarName("Bias");
if (ctx->HasOutput(b_g_name))
ctx->SetOutputDim(b_g_name, ctx->GetInputDim("Bias"));
}
protected:
framework::DataType IndicateDataType(
const framework::ExecutionContext& ctx) const override {
return framework::ToDataType(
ctx.Input<framework::LoDTensor>("Input")->type());
}
};

File diff suppressed because it is too large Load Diff

@ -26,10 +26,7 @@ namespace detail {
template <class T, class Op>
void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
int frameSize,
activation_mode_t active_node,
activation_mode_t active_gate,
activation_mode_t active_state) {
int frameSize) {
T rValueIn;
T rValueIg;
T rValueFg;
@ -60,10 +57,8 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
rPrevState = value.prevStateValue[i];
}
hppl::cpu::ForwardAct<T> act;
op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv,
rOut, rCheckI, rCheckF, rCheckO, act(active_node), act(active_gate),
act(active_state));
rOut, rCheckI, rCheckF, rCheckO);
valueIn[i] = rValueIn;
valueIg[i] = rValueIg;
@ -77,10 +72,7 @@ void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
template <class T, class Op>
void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
LstmMetaGrad<T> grad, int frameSize,
activation_mode_t active_node,
activation_mode_t active_gate,
activation_mode_t active_state) {
LstmMetaGrad<T> grad, int frameSize) {
T rValueIn;
T rValueIg;
T rValueFg;
@ -127,11 +119,10 @@ void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
rPrevState = value.prevStateValue[i];
}
hppl::cpu::BackwardAct<T> act;
op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg,
rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv,
rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad,
rCheckOGrad, act(active_node), act(active_gate), act(active_state));
rCheckOGrad);
gradIn[i] = rGradIn;
gradIg[i] = rGradIg;
@ -283,8 +274,7 @@ void cpu_lstm_forward(Op op, LstmMetaValue<T> value, int frameSize,
avx_lstm_forward_one_sequence<T>(op, value, frameSize, active_node,
active_gate, active_state);
} else {
naive_lstm_forward_one_sequence<T>(op, value, frameSize, active_node,
active_gate, active_state);
naive_lstm_forward_one_sequence<T>(op, value, frameSize);
}
}
@ -297,8 +287,7 @@ void cpu_lstm_backward(Op op, LstmMetaValue<T> value, LstmMetaGrad<T> grad,
avx_lstm_backward_one_sequence<T>(op, value, grad, frameSize, active_node,
active_gate, active_state);
} else {
naive_lstm_backward_one_sequence<T>(op, value, grad, frameSize, active_node,
active_gate, active_state);
naive_lstm_backward_one_sequence<T>(op, value, grad, frameSize);
}
}

@ -32,9 +32,7 @@ namespace detail {
*/
template <class T, class Op, bool isBatch>
__global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frameSize,
int batchSize, activation_mode_t active_node,
activation_mode_t active_gate,
activation_mode_t active_state) {
int batchSize) {
const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (frameIdx >= frameSize) return;
@ -70,10 +68,8 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frameSize,
rPrevState = value.prevStateValue[frameIdx];
}
hppl::gpu::ForwardAct<T> act;
op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv,
rOut, rCheckI, rCheckF, rCheckO, act(active_node), act(active_gate),
act(active_state));
rOut, rCheckI, rCheckF, rCheckO);
value.gateValue[frameIdx] = rValueIn;
value.gateValue[frameIdx + frameSize] = rValueIg;
@ -92,9 +88,7 @@ __global__ void KeLstmForward(Op op, LstmMetaValue<T> value, int frameSize,
template <class T, class Op, bool isBatch>
__global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
LstmMetaGrad<T> grad, int frameSize,
int batchSize, activation_mode_t active_node,
activation_mode_t active_gate,
activation_mode_t active_state) {
int batchSize) {
const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x;
if (frameIdx >= frameSize) return;
@ -145,11 +139,9 @@ __global__ void KeLstmBackward(Op op, LstmMetaValue<T> value,
rPrevState = value.prevStateValue[frameIdx];
}
hppl::gpu::BackwardAct<T> act;
op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, rGradOg,
rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, rOutputGrad,
rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, rCheckOGrad,
act(active_node), act(active_gate), act(active_state));
rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, rCheckOGrad);
grad.gateGrad[frameIdx] = rGradIn;
grad.gateGrad[frameIdx + frameSize] = rGradIg;
@ -205,13 +197,11 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op,
if (batchSize == 1) {
KeLstmForward<T, Op,
/* isBatch= */ false><<<grid, threads, 0, stream>>>(
op, value, frameSize, batchSize, active_node, active_gate,
active_state);
op, value, frameSize, batchSize);
} else {
KeLstmForward<T, Op,
/* isBatch= */ true><<<grid, threads, 0, stream>>>(
op, value, frameSize, batchSize, active_node, active_gate,
active_state);
op, value, frameSize, batchSize);
}
}
@ -240,13 +230,11 @@ void gpu_lstm_backward(const platform::DeviceContext& context, Op op,
if (batchSize == 1) {
KeLstmBackward<T, Op,
/* isBatch= */ false><<<grid, threads, 0, stream>>>(
op, value, grad, frameSize, batchSize, active_node, active_gate,
active_state);
op, value, grad, frameSize, batchSize);
} else {
KeLstmBackward<T, Op,
/* isBatch= */ true><<<grid, threads, 0, stream>>>(
op, value, grad, frameSize, batchSize, active_node, active_gate,
active_state);
op, value, grad, frameSize, batchSize);
}
}

@ -24,15 +24,29 @@ namespace detail {
namespace forward {
template <typename T>
DEVICE inline T sigmoid(const T a) {
const T min = SIGMOID_THRESHOLD_MIN;
const T max = SIGMOID_THRESHOLD_MAX;
T tmp = (a < min) ? min : ((a > max) ? max : a);
return static_cast<T>(1.0) / (static_cast<T>(1.0) + exp(-tmp));
}
template <typename T>
DEVICE inline T tanh(const T a) {
T tmp = -2.0 * a;
tmp = (tmp > EXP_MAX_INPUT) ? EXP_MAX_INPUT : tmp;
return (2.0 / (1.0 + exp(tmp))) - 1.0;
}
template <class T>
class lstm {
public:
HOSTDEVICE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg,
T &prevState, T &state, T &stateAtv, T &output,
T &checkI, T &checkF, T &checkO,
typename hppl::ForwardActType<T>::type actInput,
typename hppl::ForwardActType<T>::type actGate,
typename hppl::ForwardActType<T>::type actState) {
T &checkI, T &checkF, T &checkO) {
#if 0
// TODO(qingqing) support to activation speficed by users
valueIn = actInput(valueIn);
valueIg = actGate(valueIg + prevState * checkI);
valueFg = actGate(valueFg + prevState * checkF);
@ -40,6 +54,15 @@ class lstm {
valueOg = actGate(valueOg + state * checkO);
stateAtv = actState(state);
output = valueOg * stateAtv;
#else
valueIn = tanh<T>(valueIn);
valueIg = sigmoid<T>(valueIg + prevState * checkI);
valueFg = sigmoid<T>(valueFg + prevState * checkF);
state = valueIn * valueIg + prevState * valueFg;
valueOg = sigmoid<T>(valueOg + state * checkO);
stateAtv = tanh<T>(state);
output = valueOg * stateAtv;
#endif
}
#ifndef __NVCC__
#ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default
@ -72,6 +95,16 @@ class lstm {
namespace backward {
template <typename T>
DEVICE inline T sigmoid(const T a, const T b) {
return a * b * (1.0 - b);
}
template <typename T>
DEVICE inline T tanh(const T a, const T b) {
return a * (1.0 - b * b);
}
template <class T>
class lstm {
public:
@ -80,10 +113,9 @@ class lstm {
T &prevState, T &prevStateGrad, T &state,
T &stateGrad, T &stateAtv, T &outputGrad,
T &checkI, T &checkF, T &checkO, T &checkIGrad,
T &checkFGrad, T &checkOGrad,
typename hppl::BackwardActType<T>::type actInput,
typename hppl::BackwardActType<T>::type actGate,
typename hppl::BackwardActType<T>::type actState) {
T &checkFGrad, T &checkOGrad) {
#if 0
// TODO(qingqing) support to activation speficed by users
gradOg = actGate(outputGrad * stateAtv, valueOg);
stateGrad += actState(outputGrad * valueOg, stateAtv) + gradOg * checkO;
gradIn = actInput(stateGrad * valueIg, valueIn);
@ -93,6 +125,17 @@ class lstm {
checkIGrad = gradIg * prevState;
checkFGrad = gradFg * prevState;
checkOGrad = gradOg * state;
#else
gradOg = sigmoid<T>(outputGrad * stateAtv, valueOg);
stateGrad += tanh<T>(outputGrad * valueOg, stateAtv) + gradOg * checkO;
gradIn = tanh<T>(stateGrad * valueIg, valueIn);
gradIg = sigmoid<T>(stateGrad * valueIn, valueIg);
gradFg = sigmoid<T>(stateGrad * prevState, valueFg);
prevStateGrad = gradIg * checkI + gradFg * checkF + stateGrad * valueFg;
checkIGrad = gradIg * prevState;
checkFGrad = gradFg * prevState;
checkOGrad = gradOg * state;
#endif
}
#ifndef __NVCC__
#ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default

@ -211,6 +211,26 @@ void batched_gemm<platform::CPUPlace, double>(
}
#endif
template <>
void gemv<platform::CPUPlace, float>(const platform::DeviceContext& context,
const bool trans_a, const int M,
const int N, const float alpha,
const float* A, const float* B,
const float beta, float* C) {
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}
template <>
void gemv<platform::CPUPlace, double>(const platform::DeviceContext& context,
const bool trans_a, const int M,
const int N, const double alpha,
const double* A, const double* B,
const double beta, double* C) {
CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1);
}
template struct SetConstant<platform::CPUPlace, float>;
} // namespace math

@ -203,6 +203,33 @@ void batched_gemm<platform::GPUPlace, double>(
&beta, C, ldc, strideC, batchCount));
}
template <>
void gemv<platform::GPUPlace, float>(const platform::DeviceContext& context,
const bool trans_a, const int M,
const int N, const float alpha,
const float* A, const float* B,
const float beta, float* C) {
cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;
PADDLE_ENFORCE(platform::dynload::cublasSgemv(
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.cublas_handle(),
cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}
template <>
void gemv<platform::GPUPlace, double>(const platform::DeviceContext& context,
const bool trans_a, const int M,
const int N, const double alpha,
const double* A, const double* B,
const double beta, double* C) {
cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N;
PADDLE_ENFORCE(platform::dynload::cublasDgemv(
reinterpret_cast<const platform::CUDADeviceContext&>(context)
.cublas_handle(),
cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1));
}
template struct SetConstant<platform::GPUPlace, float>;
} // namespace math

@ -93,6 +93,11 @@ void batched_gemm(const platform::DeviceContext& context,
const T* A, const T* B, const T beta, T* C,
const int batchCount, const int strideA, const int strideB);
template <typename Place, typename T>
void gemv(const platform::DeviceContext& context, const bool trans_a,
const int M, const int N, const T alpha, const T* A, const T* B,
const T beta, T* C);
template <typename Place, typename T>
struct SetConstant {
void operator()(const platform::DeviceContext& context,

@ -89,3 +89,53 @@ TEST(math_function, zero) {
EXPECT_EQ(t[2], 1);
EXPECT_EQ(t[3], 1);
}
template <typename T>
void GemvTest(int m, int n, bool trans) {
paddle::framework::Tensor mat_a;
paddle::framework::Tensor vec_b;
paddle::framework::Tensor vec_c;
auto* cpu_place = new paddle::platform::CPUPlace();
int b_num = trans ? m : n;
int c_num = trans ? n : m;
T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
T* data_b = vec_b.mutable_data<T>({b_num}, *cpu_place);
T* data_c = vec_c.mutable_data<T>({c_num}, *cpu_place);
for (int i = 0; i < mat_a.numel(); ++i) {
data_a[i] = static_cast<T>(i);
}
for (int i = 0; i < vec_b.numel(); ++i) {
data_b[i] = static_cast<T>(i);
}
paddle::platform::CPUDeviceContext context(*cpu_place);
paddle::operators::math::gemv<paddle::platform::CPUPlace, T>(
context, trans, static_cast<int>(m), static_cast<int>(n), 1., data_a,
data_b, 0., data_c);
if (!trans) {
for (int i = 0; i < m; ++i) {
T sum = 0.0;
for (int j = 0; j < n; ++j) {
sum += data_a[i * n + j] * data_b[j];
}
ASSERT_FLOAT_EQ(data_c[i], sum);
}
} else {
for (int i = 0; i < n; ++i) {
T sum = 0.0;
for (int j = 0; j < m; ++j) {
sum += data_a[j * n + i] * data_b[j];
}
ASSERT_FLOAT_EQ(data_c[i], sum);
}
}
}
TEST(math_function, gemv) {
GemvTest<float>(3, 13, false);
GemvTest<double>(4, 5, false);
GemvTest<float>(12, 7, true);
GemvTest<double>(7, 9, true);
}

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save