Merge branch 'develop' into add_clip_op

revert-15296-async_double_buffered_py_reader
jerrywgz 6 years ago committed by GitHub
commit 4eb44380a6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -52,8 +52,8 @@ function(op_library TARGET)
endif()
if(WITH_MKLDNN)
string(REPLACE "_op" "_mkldnn_op" MKLDNN_FILE "${TARGET}")
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs ${MKLDNN_FILE}.cc)
if (EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/mkldnn/${MKLDNN_FILE}.cc)
list(APPEND mkldnn_cc_srcs mkldnn/${MKLDNN_FILE}.cc)
endif()
endif()
else()

@ -122,7 +122,7 @@ paddle.fluid.layers.transpose ArgSpec(args=['x', 'perm', 'name'], varargs=None,
paddle.fluid.layers.im2sequence ArgSpec(args=['input', 'filter_size', 'stride', 'padding', 'input_image_size', 'out_stride', 'name'], varargs=None, keywords=None, defaults=(1, 1, 0, None, 1, None))
paddle.fluid.layers.nce ArgSpec(args=['input', 'label', 'num_total_classes', 'sample_weight', 'param_attr', 'bias_attr', 'num_neg_samples', 'name', 'sampler', 'custom_dist', 'seed', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, 'uniform', None, 0, False))
paddle.fluid.layers.hsigmoid ArgSpec(args=['input', 'label', 'num_classes', 'param_attr', 'bias_attr', 'name', 'path_table', 'path_code', 'is_custom', 'is_sparse'], varargs=None, keywords=None, defaults=(None, None, None, None, None, False, False))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name'], varargs=None, keywords=None, defaults=(0, True, None))
paddle.fluid.layers.beam_search ArgSpec(args=['pre_ids', 'pre_scores', 'ids', 'scores', 'beam_size', 'end_id', 'level', 'is_accumulated', 'name', 'return_parent_idx'], varargs=None, keywords=None, defaults=(0, True, None, False))
paddle.fluid.layers.row_conv ArgSpec(args=['input', 'future_context_size', 'param_attr', 'act'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.layers.multiplex ArgSpec(args=['inputs', 'index'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.layer_norm ArgSpec(args=['input', 'scale', 'shift', 'begin_norm_axis', 'epsilon', 'param_attr', 'bias_attr', 'act', 'name'], varargs=None, keywords=None, defaults=(True, True, 1, 1e-05, None, None, None, None))
@ -322,10 +322,10 @@ paddle.fluid.layers.generate_proposal_labels ArgSpec(args=['rpn_rois', 'gt_class
paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'im_info', 'anchors', 'variances', 'pre_nms_top_n', 'post_nms_top_n', 'nms_thresh', 'min_size', 'eta', 'name'], varargs=None, keywords=None, defaults=(6000, 1000, 0.5, 0.1, 1.0, None))
paddle.fluid.layers.generate_mask_labels ArgSpec(args=['im_info', 'gt_classes', 'is_crowd', 'gt_segms', 'rois', 'labels_int32', 'num_classes', 'resolution'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name', 'axis'], varargs=None, keywords=None, defaults=('encode_center_size', True, None, 0))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.box_clip ArgSpec(args=['input', 'im_info', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', 'gtlabel', 'anchors', 'anchor_mask', 'class_num', 'ignore_thresh', 'downsample_ratio', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.multiclass_nms ArgSpec(args=['bboxes', 'scores', 'score_threshold', 'nms_top_k', 'keep_top_k', 'nms_threshold', 'normalized', 'nms_eta', 'background_label', 'name'], varargs=None, keywords=None, defaults=(0.3, True, 1.0, 0, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
@ -362,6 +362,9 @@ paddle.fluid.contrib.QuantizeTranspiler.__init__ ArgSpec(args=['self', 'weight_b
paddle.fluid.contrib.QuantizeTranspiler.convert_to_int8 ArgSpec(args=['self', 'program', 'place', 'scope'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.QuantizeTranspiler.freeze_program ArgSpec(args=['self', 'program', 'place', 'fuse_bn', 'scope'], varargs=None, keywords=None, defaults=(False, None))
paddle.fluid.contrib.QuantizeTranspiler.training_transpile ArgSpec(args=['self', 'program', 'startup_program'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.contrib.Calibrator.__init__ ArgSpec(args=['self'], varargs='args', keywords='kwargs', defaults=None)
paddle.fluid.contrib.Calibrator.sample_data ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.Calibrator.save_int8_model ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.reader.ctr_reader.ctr_reader ArgSpec(args=['feed_dict', 'file_type', 'file_format', 'dense_slot_index', 'sparse_slot_index', 'capacity', 'thread_num', 'batch_size', 'file_list', 'slots', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.build_compressor ArgSpec(args=['place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'config'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))
paddle.fluid.contrib.CompressPass.__init__ ArgSpec(args=['self', 'place', 'data_reader', 'data_feeder', 'scope', 'metrics', 'epoch', 'program_exe'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None, None))

@ -10,8 +10,22 @@ function(pass_library TARGET DEST)
set(options "")
set(oneValueArgs "")
set(multiValueArgs SRCS DEPS)
set(targetPrefix "")
# Get optional argument
set(extraMacroArgs ${ARGN})
list(LENGTH extraMacroArgs numExtraMacroArgs)
if(numExtraMacroArgs GREATER 0)
list(GET extraMacroArgs 0 targetPrefix)
endif()
cmake_parse_arguments(op_library "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
cc_library(${TARGET} SRCS ${TARGET}.cc DEPS graph_pattern_detector pass fuse_pass_base ${op_library_DEPS})
if(targetPrefix)
cc_library(${TARGET} SRCS ${targetPrefix}/${TARGET}.cc DEPS graph_pattern_detector pass fuse_pass_base ${op_library_DEPS})
else()
cc_library(${TARGET} SRCS ${TARGET}.cc DEPS graph_pattern_detector pass fuse_pass_base ${op_library_DEPS})
endif()
# add more DEST here, such as train, dist and collect USE_PASS into a file automatically.
if (${DEST} STREQUAL "base" OR ${DEST} STREQUAL "inference")
message(STATUS "add pass ${TARGET} ${DEST}")
@ -62,11 +76,11 @@ foreach (index RANGE 3 6)
endforeach()
if(WITH_MKLDNN)
pass_library(mkldnn_placement_pass base)
pass_library(depthwise_conv_mkldnn_pass base)
pass_library(conv_bias_mkldnn_fuse_pass inference)
pass_library(conv_relu_mkldnn_fuse_pass inference)
pass_library(conv_elementwise_add_mkldnn_fuse_pass inference)
pass_library(mkldnn_placement_pass base mkldnn)
pass_library(depthwise_conv_mkldnn_pass base mkldnn)
pass_library(conv_bias_mkldnn_fuse_pass inference mkldnn)
pass_library(conv_relu_mkldnn_fuse_pass inference mkldnn)
pass_library(conv_elementwise_add_mkldnn_fuse_pass inference mkldnn)
endif()
cc_library(fuse_elewise_add_act_pass SRCS fuse_elewise_add_act_pass.cc DEPS pass graph_pattern_detector )
@ -86,7 +100,7 @@ cc_test(test_fc_fuse_pass SRCS fc_fuse_pass_tester.cc DEPS fc_fuse_pass framewor
cc_test(test_seqpool_concat_fuse_pass SRCS seqpool_concat_fuse_pass_tester.cc DEPS seqpool_concat_fuse_pass framework_proto)
cc_test(test_is_test_pass SRCS is_test_pass_tester.cc DEPS is_test_pass)
if (WITH_MKLDNN)
cc_test(test_depthwise_conv_mkldnn_pass SRCS depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
cc_test(test_conv_elementwise_add_mkldnn_fuse_pass SRCS conv_elementwise_add_mkldnn_fuse_pass_tester.cc DEPS conv_elementwise_add_mkldnn_fuse_pass)
cc_test(test_depthwise_conv_mkldnn_pass SRCS mkldnn/depthwise_conv_mkldnn_pass_tester.cc DEPS depthwise_conv_mkldnn_pass)
cc_test(test_conv_relu_mkldnn_fuse_pass SRCS mkldnn/conv_relu_mkldnn_fuse_pass_tester.cc DEPS conv_relu_mkldnn_fuse_pass)
cc_test(test_conv_elementwise_add_mkldnn_fuse_pass SRCS mkldnn/conv_elementwise_add_mkldnn_fuse_pass_tester.cc DEPS conv_elementwise_add_mkldnn_fuse_pass)
endif ()

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_bias_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/conv_bias_mkldnn_fuse_pass.h"
#include <functional>
#include <string>
#include <vector>

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/conv_elementwise_add_mkldnn_fuse_pass.h"
#include <functional>
#include <list>
#include <map>

@ -15,8 +15,8 @@
#include <gtest/gtest.h>
#include <string>
#include "paddle/fluid/framework/ir/conv_elementwise_add_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/graph_traits.h"
#include "paddle/fluid/framework/ir/mkldnn/conv_elementwise_add_mkldnn_fuse_pass.h"
namespace paddle {
namespace framework {

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/conv_relu_mkldnn_fuse_pass.h"
#include <string>
#include <vector>
#include "paddle/fluid/platform/enforce.h"

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/conv_relu_mkldnn_fuse_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/conv_relu_mkldnn_fuse_pass.h"
#include <gtest/gtest.h>
#include "paddle/fluid/framework/op_proto_maker.h"

@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/depthwise_conv_mkldnn_pass.h"
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
namespace paddle {

@ -12,7 +12,7 @@
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/ir/depthwise_conv_mkldnn_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/depthwise_conv_mkldnn_pass.h"
#include <gtest/gtest.h>

@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/ir/mkldnn_placement_pass.h"
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_placement_pass.h"
#include <string>
namespace paddle {

@ -128,9 +128,9 @@ inference_analysis_api_test_with_fake_data(test_analyzer_resnet50
inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_conv
"${INFERENCE_DEMO_INSTALL_DIR}/mobilenet_depthwise_conv" analyzer_resnet50_tester.cc "mobilenet_model.tar.gz" SERIAL)
# bert, max_len=20
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert20")
download_model_and_data(${BERT_INSTALL_DIR} "bert_model.tar.gz" "bert_data_len20.txt.tar.gz")
# bert, max_len=20, embedding_dim=128
set(BERT_INSTALL_DIR "${INFERENCE_DEMO_INSTALL_DIR}/bert_emb128")
download_model_and_data(${BERT_INSTALL_DIR} "bert_emb128_model.tar.gz" "bert_data_len20.txt.tar.gz")
inference_analysis_api_test(test_analyzer_bert ${BERT_INSTALL_DIR} analyzer_bert_tester.cc SERIAL)
# anakin

@ -1,4 +1,4 @@
cc_library(benchmark SRCS benchmark.cc DEPS enforce)
cc_test(test_benchmark SRCS benchmark_tester.cc DEPS benchmark)
#cc_binary(visualizer SRCS visualizer.cc DEPS analysis
# paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)
cc_binary(visualizer SRCS visualizer.cc DEPS analysis
paddle_pass_builder ir_pass_manager pass graph_viz_pass analysis_passes)

@ -14,7 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/activation_op.h"
#include <string>
#include "paddle/fluid/operators/mkldnn_activation_op.h"
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
#include "paddle/fluid/platform/port.h"
namespace paddle {

@ -51,6 +51,9 @@ class BeamSearchOpMaker : public framework::OpProtoAndCheckerMaker {
AddOutput("selected_scores",
"A LoDTensor containing the accumulated scores corresponding to "
"Output(selected_ids).");
AddOutput(
"parent_idx",
"A Tensor preserving the selected_ids' parent indice in pre_ids.");
// Attributes stored in AttributeMap
AddAttr<int>("level", "the level of LoDTensor");

@ -41,13 +41,15 @@ class BeamSearchOpKernel : public framework::OpKernel<T> {
auto selected_ids = context.Output<framework::LoDTensor>("selected_ids");
auto selected_scores =
context.Output<framework::LoDTensor>("selected_scores");
auto* parent_idx = context.Output<framework::Tensor>("parent_idx");
PADDLE_ENFORCE_NOT_NULL(selected_ids);
PADDLE_ENFORCE_NOT_NULL(selected_scores);
PADDLE_ENFORCE_NOT_NULL(parent_idx);
math::BeamSearchFunctor<DeviceContext, T> alg;
alg(context.template device_context<DeviceContext>(), pre_ids, pre_scores,
ids, scores, selected_ids, selected_scores, level, beam_size, end_id,
is_accumulated);
ids, scores, selected_ids, selected_scores, parent_idx, level,
beam_size, end_id, is_accumulated);
}
};

@ -32,6 +32,7 @@ polygon_box_transform_op.cu)
detection_library(rpn_target_assign_op SRCS rpn_target_assign_op.cc)
detection_library(generate_proposal_labels_op SRCS generate_proposal_labels_op.cc)
detection_library(box_clip_op SRCS box_clip_op.cc box_clip_op.cu)
detection_library(yolov3_loss_op SRCS yolov3_loss_op.cc)
if(WITH_GPU)
detection_library(generate_proposals_op SRCS generate_proposals_op.cc generate_proposals_op.cu DEPS memory cub)

@ -10,6 +10,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include <vector>
namespace paddle {
namespace operators {
@ -32,32 +33,57 @@ class BoxCoderOp : public framework::OperatorWithKernel {
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(prior_box_dims.size(), 2,
"The rank of Input of PriorBoxVar must be 2");
"The rank of Input PriorBox must be 2");
PADDLE_ENFORCE_EQ(prior_box_dims[1], 4,
"The shape of PriorBox is [N, 4]");
if (ctx->HasInput("PriorBoxVar")) {
auto prior_box_var_dims = ctx->GetInputDim("PriorBoxVar");
PADDLE_ENFORCE_EQ(prior_box_dims, prior_box_var_dims);
PADDLE_ENFORCE(
prior_box_var_dims.size() == 1 || prior_box_var_dims.size() == 2,
"Input(PriorBoxVar) of BoxCoderOp should be 1 or 2.");
if (prior_box_var_dims.size() == 1) {
PADDLE_ENFORCE_EQ(
prior_box_var_dims[0], 4,
"The 1st dimension of Input(PriorBoxVar) should be 4"
"when the rank is 1.");
} else {
PADDLE_ENFORCE_EQ(
prior_box_dims, prior_box_var_dims,
"The dimension of Input(PriorBoxVar) should be equal to"
"the dimension of Input(PriorBox when the rank is 2.)");
}
}
}
auto code_type =
GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
if (code_type == BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
"The rank of Input of TargetBox must be 2");
PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
"The shape of TargetBox is [M, 4]");
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
"The rank of Input of TargetBox must be 3");
auto code_type = GetBoxCodeType(ctx->Attrs().Get<std::string>("code_type"));
int axis = ctx->Attrs().Get<int>("axis");
if (code_type == BoxCodeType::kEncodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 2,
"The rank of Input TargetBox must be 2");
PADDLE_ENFORCE_EQ(target_box_dims[1], 4,
"The shape of TargetBox is [M, 4]");
ctx->SetOutputDim(
"OutputBox",
framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
PADDLE_ENFORCE_EQ(target_box_dims.size(), 3,
"The rank of Input TargetBox must be 3");
if (axis == 0) {
PADDLE_ENFORCE_EQ(target_box_dims[1], prior_box_dims[0]);
PADDLE_ENFORCE_EQ(target_box_dims[2], prior_box_dims[1]);
} else if (axis == 1) {
PADDLE_ENFORCE_EQ(target_box_dims[0], prior_box_dims[0]);
} else {
PADDLE_THROW("axis must be 0 or 1.");
}
PADDLE_ENFORCE_EQ(target_box_dims[2], prior_box_dims[1]);
ctx->ShareDim("TargetBox", /*->*/ "OutputBox");
}
if (code_type == BoxCodeType::kDecodeCenterSize && axis == 1) {
ctx->ShareLoD("PriorBox", /*->*/ "OutputBox");
} else {
ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
}
ctx->SetOutputDim(
"OutputBox",
framework::make_ddim({target_box_dims[0], prior_box_dims[0], 4}));
ctx->ShareLoD("TargetBox", /*->*/ "OutputBox");
}
};
@ -100,6 +126,21 @@ class BoxCoderOpMaker : public framework::OpProtoAndCheckerMaker {
"(bool, default true) "
"whether treat the priorbox as a noramlized box")
.SetDefault(true);
AddAttr<int>("axis",
"(int, default 0)"
"which axis in PriorBox to broadcast for box decode,"
"for example, if axis is 0 and TargetBox has shape"
"[N, M, 4] and PriorBox has shape [M, 4], then PriorBox "
"will broadcast to [N, M, 4] for decoding. It is only valid"
"when code type is decode_center_size")
.SetDefault(0)
.InEnum({0, 1});
AddAttr<std::vector<float>>(
"variance",
"(vector<float>, default {}),"
"variance of prior box with shape [4]. PriorBoxVar and variance can"
"not be provided at the same time.")
.SetDefault(std::vector<float>{});
AddOutput("OutputBox",
"(LoDTensor or Tensor) "
"When code_type is 'encode_center_size', the output tensor of "
@ -138,7 +179,11 @@ where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, width
and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote the
priorbox's (anchor) center coordinates, width and height. `pxv`, `pyv`, `pwv`,
`phv` denote the variance of the priorbox and `ox`, `oy`, `ow`, `oh` denote the
encoded/decoded coordinates, width and height.
encoded/decoded coordinates, width and height.
During Box Decoding, two modes for broadcast are supported. Say target box has
shape [N, M, 4], and the shape of prior box can be [N, 4] or [M, 4]. Then prior
box will broadcast to target box along the assigned axis.
)DOC");
}
};

@ -9,6 +9,9 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/device_vector.h>
#include <thrust/host_vector.h>
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/operators/detection/box_coder_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
@ -16,11 +19,11 @@ namespace paddle {
namespace operators {
template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, const int row,
const int col, const int len,
const bool normalized, T* output) {
__global__ void EncodeCenterSizeKernel(
const T* prior_box_data, const T* prior_box_var_data,
const T* target_box_data, const int row, const int col, const int len,
const bool normalized, const T prior_box_var_size, const float* variance,
const int var_size, T* output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int row_idx = idx / col;
@ -30,11 +33,9 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
T prior_box_height = prior_box_data[col_idx * len + 3] -
prior_box_data[col_idx * len + 1] +
(normalized == false);
T prior_box_center_x =
(prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
prior_box_data[col_idx * len + 1]) /
2;
T prior_box_center_x = prior_box_data[col_idx * len] + prior_box_width / 2;
T prior_box_center_y =
prior_box_data[col_idx * len + 1] + prior_box_height / 2;
T target_box_center_x =
(target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
@ -55,58 +56,73 @@ __global__ void EncodeCenterSizeKernel(const T* prior_box_data,
output[idx * len + 2] = log(fabs(target_box_width / prior_box_width));
output[idx * len + 3] = log(fabs(target_box_height / prior_box_height));
if (prior_box_var_data) {
output[idx * len] /= prior_box_var_data[col_idx * len];
output[idx * len + 1] /= prior_box_var_data[col_idx * len + 1];
output[idx * len + 2] /= prior_box_var_data[col_idx * len + 2];
output[idx * len + 3] /= prior_box_var_data[col_idx * len + 3];
int prior_var_offset = 0;
if (prior_box_var_size == 2) {
prior_var_offset = col_idx * len;
}
output[idx * len] /= prior_box_var_data[prior_var_offset];
output[idx * len + 1] /= prior_box_var_data[prior_var_offset + 1];
output[idx * len + 2] /= prior_box_var_data[prior_var_offset + 2];
output[idx * len + 3] /= prior_box_var_data[prior_var_offset + 3];
} else if (var_size == 4) {
for (int k = 0; k < 4; ++k) {
output[idx * len + k] /= static_cast<T>(variance[k]);
}
}
}
}
template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, const int row,
const int col, const int len,
const bool normalized, T* output) {
__global__ void DecodeCenterSizeKernel(
const T* prior_box_data, const T* prior_box_var_data,
const T* target_box_data, const int row, const int col, const int len,
const bool normalized, const T prior_box_var_size, const float* variance,
const int var_size, const int axis, T* output) {
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
int prior_box_offset = 0;
if (idx < row * col) {
const int col_idx = idx % col;
T prior_box_width = prior_box_data[col_idx * len + 2] -
prior_box_data[col_idx * len] + (normalized == false);
T prior_box_height = prior_box_data[col_idx * len + 3] -
prior_box_data[col_idx * len + 1] +
const int row_idx = idx / col;
prior_box_offset = axis == 0 ? col_idx * len : row_idx * len;
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
T prior_box_height = prior_box_data[prior_box_offset + 3] -
prior_box_data[prior_box_offset + 1] +
(normalized == false);
T prior_box_center_x =
(prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
prior_box_data[col_idx * len + 1]) /
2;
prior_box_data[prior_box_offset] + prior_box_width / 2;
T prior_box_center_y =
prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
T target_box_width, target_box_height;
T target_box_center_x, target_box_center_y;
T box_var_x = T(1), box_var_y = T(1);
T box_var_w = T(1), box_var_h = T(1);
if (prior_box_var_data) {
target_box_width = exp(prior_box_var_data[col_idx * len + 2] *
target_box_data[idx * len + 2]) *
prior_box_width;
target_box_height = exp(prior_box_var_data[col_idx * len + 3] *
target_box_data[idx * len + 3]) *
prior_box_height;
target_box_center_x = prior_box_var_data[col_idx * len] *
target_box_data[idx * len] * prior_box_width +
prior_box_center_x;
target_box_center_y = prior_box_var_data[col_idx * len + 1] *
target_box_data[idx * len + 1] *
prior_box_height +
prior_box_center_y;
} else {
target_box_width = exp(target_box_data[idx * len + 2]) * prior_box_width;
target_box_height =
exp(target_box_data[idx * len + 3]) * prior_box_height;
target_box_center_x =
target_box_data[idx * len] * prior_box_width + prior_box_center_x;
target_box_center_y = target_box_data[idx * len + 1] * prior_box_height +
prior_box_center_y;
int prior_var_offset = 0;
if (prior_box_var_size == 2) {
prior_var_offset = axis == 0 ? col_idx * len : row_idx * len;
}
box_var_x = prior_box_var_data[prior_var_offset];
box_var_y = prior_box_var_data[prior_var_offset + 1];
box_var_w = prior_box_var_data[prior_var_offset + 2];
box_var_h = prior_box_var_data[prior_var_offset + 3];
} else if (var_size == 4) {
box_var_x = static_cast<T>(variance[0]);
box_var_y = static_cast<T>(variance[1]);
box_var_w = static_cast<T>(variance[2]);
box_var_h = static_cast<T>(variance[3]);
}
target_box_width =
exp(box_var_w * target_box_data[idx * len + 2]) * prior_box_width;
target_box_height =
exp(box_var_h * target_box_data[idx * len + 3]) * prior_box_height;
target_box_center_x =
box_var_x * target_box_data[idx * len] * prior_box_width +
prior_box_center_x;
target_box_center_y =
box_var_y * target_box_data[idx * len + 1] * prior_box_height +
prior_box_center_y;
output[idx * len] = target_box_center_x - target_box_width / 2;
output[idx * len + 1] = target_box_center_y - target_box_height / 2;
@ -127,36 +143,64 @@ class BoxCoderCUDAKernel : public framework::OpKernel<T> {
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<framework::Tensor>("OutputBox");
std::vector<float> variance = context.Attr<std::vector<float>>("variance");
const T* prior_box_data = prior_box->data<T>();
const T* target_box_data = target_box->data<T>();
const T* prior_box_var_data = nullptr;
if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();
auto prior_box_var_size = 0;
if (prior_box_var) {
PADDLE_ENFORCE(variance.empty(),
"Input 'PriorBoxVar' and attribute 'variance' should not"
"be used at the same time.");
prior_box_var_data = prior_box_var->data<T>();
prior_box_var_size = prior_box_var->dims().size();
}
if (!(variance.empty())) {
PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
"Size of attribute 'variance' should be 4");
}
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
"Only support 1 level of LoD.");
}
const int var_size = static_cast<int>(variance.size());
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
int axis = context.Attr<int>("axis");
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
if (code_type == BoxCodeType::kDecodeCenterSize) {
col = target_box->dims()[1];
}
auto len = prior_box->dims()[1];
int block = 512;
int grid = (row * col + block - 1) / block;
auto& device_ctx = context.cuda_device_context();
auto& allocator =
platform::DeviceTemporaryAllocator::Instance().Get(device_ctx);
int bytes = var_size * sizeof(float);
auto dev_var = allocator.Allocate(bytes);
float* dev_var_data = reinterpret_cast<float*>(dev_var->ptr());
auto cplace = platform::CPUPlace();
const auto gplace = boost::get<platform::CUDAPlace>(context.GetPlace());
memory::Copy(gplace, dev_var_data, cplace, &variance[0], bytes,
device_ctx.stream());
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
T* output = output_box->data<T>();
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col, len,
normalized, output);
normalized, prior_box_var_size, dev_var_data, var_size, output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col, len,
normalized, output);
normalized, prior_box_var_size, dev_var_data, var_size, axis, output);
}
}
};

@ -11,6 +11,7 @@ limitations under the License. */
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/math_function.h"
@ -34,7 +35,8 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void EncodeCenterSize(const framework::Tensor* target_box,
const framework::Tensor* prior_box,
const framework::Tensor* prior_box_var,
const bool normalized, T* output) const {
const bool normalized,
const std::vector<float> variance, T* output) const {
int64_t row = target_box->dims()[0];
int64_t col = prior_box->dims()[0];
int64_t len = prior_box->dims()[1];
@ -53,10 +55,9 @@ class BoxCoderKernel : public framework::OpKernel<T> {
T prior_box_height = prior_box_data[j * len + 3] -
prior_box_data[j * len + 1] +
(normalized == false);
T prior_box_center_x =
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
T prior_box_center_x = prior_box_data[j * len] + prior_box_width / 2;
T prior_box_center_y =
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
prior_box_data[j * len + 1] + prior_box_height / 2;
T target_box_center_x =
(target_box_data[i * len + 2] + target_box_data[i * len]) / 2;
@ -78,10 +79,18 @@ class BoxCoderKernel : public framework::OpKernel<T> {
output[offset + 3] =
std::log(std::fabs(target_box_height / prior_box_height));
if (prior_box_var) {
output[offset] /= prior_box_var_data[j * len];
output[offset + 1] /= prior_box_var_data[j * len + 1];
output[offset + 2] /= prior_box_var_data[j * len + 2];
output[offset + 3] /= prior_box_var_data[j * len + 3];
int prior_var_offset = 0;
if (prior_box_var->dims().size() == 2) {
prior_var_offset = j * len;
}
output[offset] /= prior_box_var_data[prior_var_offset];
output[offset + 1] /= prior_box_var_data[prior_var_offset + 1];
output[offset + 2] /= prior_box_var_data[prior_var_offset + 2];
output[offset + 3] /= prior_box_var_data[prior_var_offset + 3];
} else if (!(variance.empty())) {
for (int k = 0; k < 4; ++k) {
output[offset + k] /= static_cast<T>(variance[k]);
}
}
}
}
@ -89,58 +98,71 @@ class BoxCoderKernel : public framework::OpKernel<T> {
void DecodeCenterSize(const framework::Tensor* target_box,
const framework::Tensor* prior_box,
const framework::Tensor* prior_box_var,
const bool normalized, T* output) const {
const bool normalized, const int axis,
const std::vector<float> variance, T* output) const {
int64_t row = target_box->dims()[0];
int64_t col = prior_box->dims()[0];
int64_t len = prior_box->dims()[1];
int64_t col = target_box->dims()[1];
int64_t len = target_box->dims()[2];
auto* target_box_data = target_box->data<T>();
auto* prior_box_data = prior_box->data<T>();
const T* prior_box_var_data = nullptr;
if (prior_box_var) prior_box_var_data = prior_box_var->data<T>();
int prior_box_offset = 0;
#ifdef PADDLE_WITH_MKLML
#pragma omp parallel for collapse(2)
#endif
for (int64_t i = 0; i < row; ++i) {
for (int64_t j = 0; j < col; ++j) {
size_t offset = i * col * len + j * len;
T prior_box_width = prior_box_data[j * len + 2] -
prior_box_data[j * len] + (normalized == false);
T prior_box_height = prior_box_data[j * len + 3] -
prior_box_data[j * len + 1] +
if (axis == 0) {
prior_box_offset = j * len;
} else if (axis == 1) {
prior_box_offset = i * len;
}
T prior_box_width = prior_box_data[prior_box_offset + 2] -
prior_box_data[prior_box_offset] +
(normalized == false);
T prior_box_height = prior_box_data[prior_box_offset + 3] -
prior_box_data[prior_box_offset + 1] +
(normalized == false);
T prior_box_center_x =
(prior_box_data[j * len + 2] + prior_box_data[j * len]) / 2;
prior_box_data[prior_box_offset] + prior_box_width / 2;
T prior_box_center_y =
(prior_box_data[j * len + 3] + prior_box_data[j * len + 1]) / 2;
prior_box_data[prior_box_offset + 1] + prior_box_height / 2;
T target_box_center_x = 0, target_box_center_y = 0;
T target_box_width = 0, target_box_height = 0;
T box_var_x = T(1), box_var_y = T(1);
T box_var_w = T(1), box_var_h = T(1);
if (prior_box_var) {
target_box_center_x = prior_box_var_data[j * len] *
target_box_data[offset] * prior_box_width +
prior_box_center_x;
target_box_center_y = prior_box_var_data[j * len + 1] *
target_box_data[offset + 1] *
prior_box_height +
prior_box_center_y;
target_box_width = std::exp(prior_box_var_data[j * len + 2] *
target_box_data[offset + 2]) *
prior_box_width;
target_box_height = std::exp(prior_box_var_data[j * len + 3] *
target_box_data[offset + 3]) *
prior_box_height;
} else {
target_box_center_x =
target_box_data[offset] * prior_box_width + prior_box_center_x;
target_box_center_y = target_box_data[offset + 1] * prior_box_height +
prior_box_center_y;
target_box_width =
std::exp(target_box_data[offset + 2]) * prior_box_width;
target_box_height =
std::exp(target_box_data[offset + 3]) * prior_box_height;
int prior_var_offset = 0;
if (prior_box_var->dims().size() == 2) {
if (axis == 0)
prior_var_offset = j * len;
else if (axis == 1)
prior_var_offset = i * len;
}
box_var_x = prior_box_var_data[prior_var_offset];
box_var_y = prior_box_var_data[prior_var_offset + 1];
box_var_w = prior_box_var_data[prior_var_offset + 2];
box_var_h = prior_box_var_data[prior_var_offset + 3];
} else if (!(variance.empty())) {
box_var_x = static_cast<T>(variance[0]);
box_var_y = static_cast<T>(variance[1]);
box_var_w = static_cast<T>(variance[2]);
box_var_h = static_cast<T>(variance[3]);
}
target_box_center_x =
box_var_x * target_box_data[offset] * prior_box_width +
prior_box_center_x;
target_box_center_y =
box_var_y * target_box_data[offset + 1] * prior_box_height +
prior_box_center_y;
target_box_width =
std::exp(box_var_w * target_box_data[offset + 2]) * prior_box_width;
target_box_height = std::exp(box_var_h * target_box_data[offset + 3]) *
prior_box_height;
output[offset] = target_box_center_x - target_box_width / 2;
output[offset + 1] = target_box_center_y - target_box_height / 2;
@ -157,26 +179,40 @@ class BoxCoderKernel : public framework::OpKernel<T> {
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<framework::Tensor>("OutputBox");
std::vector<float> variance = context.Attr<std::vector<float>>("variance");
const int axis = context.Attr<int>("axis");
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1UL,
"Only support 1 level of LoD.");
}
if (prior_box_var) {
PADDLE_ENFORCE(variance.empty(),
"Input 'PriorBoxVar' and attribute 'variance' should not"
"be used at the same time.");
}
if (!(variance.empty())) {
PADDLE_ENFORCE(static_cast<int>(variance.size()) == 4,
"Size of attribute 'variance' should be 4");
}
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
if (code_type == BoxCodeType::kDecodeCenterSize) {
col = target_box->dims()[1];
}
auto len = prior_box->dims()[1];
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
bool normalized = context.Attr<bool>("box_normalized");
T* output = output_box->data<T>();
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSize(target_box, prior_box, prior_box_var, normalized,
output);
variance, output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSize(target_box, prior_box, prior_box_var, normalized,
output);
DecodeCenterSize(target_box, prior_box, prior_box_var, normalized, axis,
variance, output);
}
}
};

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save