Layer normalization fuse pass. (#30721)
parent
b1026f64af
commit
4f066e316e
@ -0,0 +1,231 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
#include "paddle/fluid/framework/framework.pb.h"
|
||||
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
|
||||
#include "paddle/fluid/framework/ir/layer_norm_fuse_pass.h"
|
||||
#include "paddle/fluid/framework/op_version_registry.h"
|
||||
#include "paddle/fluid/framework/var_desc.h"
|
||||
#include "paddle/fluid/platform/enforce.h"
|
||||
#include "paddle/fluid/string/pretty_log.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
// cpplint complaints (wrong!) for not included <string> header in below line.
|
||||
using string::PrettyLogDetail; // NOLINT
|
||||
|
||||
namespace {
|
||||
void validateReduceOpAttrs(const Node* node, const std::string& name) {
|
||||
const auto* op = node->Op();
|
||||
if (op->HasAttr("dim")) {
|
||||
auto dims = BOOST_GET_CONST(std::vector<int>, op->GetAttr("dim"));
|
||||
PADDLE_ENFORCE_EQ(dims.size(), 1, platform::errors::PreconditionNotMet(
|
||||
"The LayerNorm fusion ", name,
|
||||
" reduction must happen only over "
|
||||
"single dimension."));
|
||||
PADDLE_ENFORCE_EQ(dims.front(), -1, platform::errors::PreconditionNotMet(
|
||||
"The LayerNorm fusion ", name,
|
||||
" reduction must happen over last "
|
||||
"dimension."));
|
||||
}
|
||||
if (op->HasAttr("reduce_all")) {
|
||||
PADDLE_ENFORCE(!BOOST_GET_CONST(bool, op->GetAttr("reduce_all")),
|
||||
platform::errors::PreconditionNotMet(
|
||||
"The LayerNorm fusion ", name,
|
||||
" reduction must have "
|
||||
"\'reduce_all\' attribute set to false."));
|
||||
}
|
||||
if (op->HasAttr("keep_dim")) {
|
||||
PADDLE_ENFORCE(BOOST_GET_CONST(bool, op->GetAttr("keep_dim")),
|
||||
platform::errors::PreconditionNotMet(
|
||||
"The LayerNorm fusion ", name,
|
||||
" reduction must have "
|
||||
"\'keep_dim\' attribute set to true."));
|
||||
}
|
||||
}
|
||||
|
||||
void setIntermediateOut(OpDesc* desc, const std::string& out_name,
|
||||
const std::string& scope_name) {
|
||||
std::string new_name = scope_name + "/at." + out_name + ".new";
|
||||
desc->SetOutput(out_name, {new_name});
|
||||
}
|
||||
|
||||
void addIntermediateOut(Node* op_node, const std::string& out_name,
|
||||
const std::string& scope_name, Graph* graph) {
|
||||
std::string new_name = scope_name + "/at." + out_name + ".new";
|
||||
VarDesc out_var(new_name);
|
||||
out_var.SetPersistable(false);
|
||||
auto* node_var = graph->CreateVarNode(&out_var);
|
||||
IR_NODE_LINK_TO(op_node, node_var);
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
void LayerNormFusePass::ApplyImpl(Graph* graph) const {
|
||||
PADDLE_ENFORCE_NOT_NULL(graph,
|
||||
platform::errors::InvalidArgument(
|
||||
"The input graph of "
|
||||
"LayerNormFusePass should not be nullptr."));
|
||||
FusePassBase::Init(scope_name_, graph);
|
||||
|
||||
auto* scope = param_scope();
|
||||
PADDLE_ENFORCE_NOT_NULL(
|
||||
scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
|
||||
|
||||
GraphPatternDetector gpd;
|
||||
patterns::LayerNorm layer_norm_pattern(gpd.mutable_pattern(), scope_name_);
|
||||
layer_norm_pattern();
|
||||
|
||||
int found_layer_norm_count = 0;
|
||||
auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
|
||||
Graph* g) {
|
||||
VLOG(4) << "Fuse LayerNorm from subgraph.";
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x, x, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_mean, x_mean, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_mean_out, x_mean_out, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_sub_mean, x_sub_mean, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_sub_mean_out, x_sub_mean_out,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(sqr_pow, sqr_pow, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_sub_mean_sqr, x_sub_mean_sqr,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(x_sub_mean_sqr_out, x_sub_mean_sqr_out,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev, std_dev, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev_out, std_dev_out, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(eps, eps, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev_eps, std_dev_eps, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev_eps_out, std_dev_eps_out,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev_eps_sqrt, std_dev_eps_sqrt,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(std_dev_eps_sqrt_out, std_dev_eps_sqrt_out,
|
||||
layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(division, division, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(division_out, division_out, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(gamma, gamma, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(scale, scale, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(beta, beta, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(shift, shift, layer_norm_pattern);
|
||||
GET_IR_NODE_FROM_SUBGRAPH(shift_out, shift_out, layer_norm_pattern);
|
||||
|
||||
auto* eps_tensor = scope->FindVar(eps->Name())->GetMutable<LoDTensor>();
|
||||
|
||||
// ------------------ subgraph node's validation ---------------------------
|
||||
PADDLE_ENFORCE_EQ(
|
||||
eps_tensor->numel(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm divisor "
|
||||
"epsilon value must be one-element tensor, but has %s "
|
||||
"elements.",
|
||||
eps_tensor->numel()));
|
||||
PADDLE_ENFORCE_EQ(eps_tensor->type(), proto::VarType::FP32,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm divisor "
|
||||
"epsilon value must be of FP32 data type, but is %s.",
|
||||
eps_tensor->type()));
|
||||
|
||||
const auto& gamma_shape = gamma->Var()->GetShape();
|
||||
const auto& beta_shape = beta->Var()->GetShape();
|
||||
const auto& x_shape = x->Var()->GetShape();
|
||||
int64_t x_last_dim = x_shape.back();
|
||||
|
||||
PADDLE_ENFORCE_EQ(gamma_shape.size(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm gamma "
|
||||
"(scale) tensor shape must be one-dimensional, "
|
||||
"but is %s.",
|
||||
gamma_shape.size()));
|
||||
PADDLE_ENFORCE_EQ(beta_shape.size(), 1,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm beta "
|
||||
"(shift) tensor shape must be one-dimensional, "
|
||||
"but is %s.",
|
||||
beta_shape.size()));
|
||||
PADDLE_ENFORCE_EQ(beta_shape, gamma_shape,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm beta "
|
||||
"and gamma tensors shapes' must be equal."));
|
||||
PADDLE_ENFORCE_EQ(gamma_shape.front(), x_last_dim,
|
||||
platform::errors::InvalidArgument(
|
||||
"The LayerNorm beta "
|
||||
"and gamma tensors shapes' must be equal to the last "
|
||||
"input's dimension size."));
|
||||
|
||||
validateReduceOpAttrs(x_mean, "input mean");
|
||||
validateReduceOpAttrs(std_dev, "std_dev mean");
|
||||
|
||||
// ------------------ op creation and placement ---------------------------
|
||||
|
||||
OpDesc ln_op_desc;
|
||||
ln_op_desc.SetType("layer_norm");
|
||||
ln_op_desc.SetInput("X", {x->Name()});
|
||||
ln_op_desc.SetInput("Scale", {gamma->Name()});
|
||||
ln_op_desc.SetInput("Bias", {beta->Name()});
|
||||
ln_op_desc.SetOutput("Y", {shift_out->Name()});
|
||||
setIntermediateOut(&ln_op_desc, "Mean", scope_name_);
|
||||
setIntermediateOut(&ln_op_desc, "Variance", scope_name_);
|
||||
ln_op_desc.SetAttr("begin_norm_axis", static_cast<int>(x_shape.size() - 1));
|
||||
ln_op_desc.SetAttr("epsilon", *(eps_tensor->data<float>()));
|
||||
ln_op_desc.SetAttr("is_test", true);
|
||||
Node* ln_op = g->CreateOpNode(&ln_op_desc);
|
||||
|
||||
addIntermediateOut(ln_op, "Mean", scope_name_, g);
|
||||
addIntermediateOut(ln_op, "Variance", scope_name_, g);
|
||||
|
||||
IR_NODE_LINK_TO(x, ln_op);
|
||||
IR_NODE_LINK_TO(gamma, ln_op);
|
||||
IR_NODE_LINK_TO(beta, ln_op);
|
||||
IR_OP_VAR_LINK(ln_op, shift_out);
|
||||
GraphSafeRemoveNodes(
|
||||
g,
|
||||
{x_mean, x_mean_out, x_sub_mean, x_sub_mean_out, sqr_pow,
|
||||
x_sub_mean_sqr, x_sub_mean_sqr_out, std_dev, std_dev_out, eps,
|
||||
std_dev_eps, std_dev_eps_out, std_dev_eps_sqrt, std_dev_eps_sqrt_out,
|
||||
division, division_out, scale, scale_out, shift});
|
||||
found_layer_norm_count++;
|
||||
};
|
||||
|
||||
gpd(graph, handler);
|
||||
AddStatis(found_layer_norm_count);
|
||||
PrettyLogDetail("--- Fused %d subgraphs into layer_norm op.",
|
||||
found_layer_norm_count);
|
||||
}
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
||||
|
||||
REGISTER_PASS(layer_norm_fuse_pass, paddle::framework::ir::LayerNormFusePass);
|
||||
REGISTER_PASS_CAPABILITY(layer_norm_fuse_pass)
|
||||
.AddCombination(
|
||||
paddle::framework::compatible::OpVersionComparatorCombination()
|
||||
.GE("elementwise_add", 0)
|
||||
.LE("elementwise_add", 1)
|
||||
.GE("elementwise_div", 0)
|
||||
.LE("elementwise_div", 1)
|
||||
.GE("elementwise_mul", 0)
|
||||
.LE("elementwise_mul", 1)
|
||||
.GE("elementwise_pow", 0)
|
||||
.LE("elementwise_pow", 1)
|
||||
.GE("elementwise_sub", 0)
|
||||
.LE("elementwise_sub", 1)
|
||||
.EQ("reduce_mean", 0)
|
||||
.EQ("sqrt", 0));
|
@ -0,0 +1,84 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <string>
|
||||
|
||||
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
||||
#include "paddle/fluid/framework/ir/graph.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
/*
|
||||
* \brief Fuse the subgraph representing layer normalization into
|
||||
* layer_norm op.
|
||||
*
|
||||
* \note The following graph represents this equation:
|
||||
*
|
||||
* x - u(x)
|
||||
* y(c) * ------------------- + b(c)
|
||||
* sqrt(sigma^2 + eps)
|
||||
*
|
||||
* x - input data
|
||||
* u(x) - mean
|
||||
* sigma^2 - standard deviation
|
||||
* eps - epsilon
|
||||
* y(c) - gamma (scale) channelwise
|
||||
* b(c) - beta (shift) channelwise
|
||||
*
|
||||
*
|
||||
* X
|
||||
* / \
|
||||
* / reduce_mean "u(x)"
|
||||
* \ /
|
||||
* elementwise_sub "x - u(x)"
|
||||
* / \ 2
|
||||
* | \ /
|
||||
* | elementwise_pow "(x - u(x))^2"
|
||||
* | |
|
||||
* | reduce_mean "sigma^2 = 1/C*Sum{(x - u(x))^2}"
|
||||
* | | eps
|
||||
* | | /
|
||||
* | elementwise_add "sigma^2 + epsilon"
|
||||
* \ |
|
||||
* \ sqrt "sqrt(sigma^2 + epsilon)"
|
||||
* \ /
|
||||
* \ /
|
||||
* elementwise_div "lnorm = {x-u(x)}/{sqrt(sigma^2 + epsilon)}"
|
||||
* |
|
||||
* gamma |
|
||||
* \ |
|
||||
* elementwise_mul "scale: gamma(C) * lnorm"
|
||||
* |
|
||||
* beta |
|
||||
* \ |
|
||||
* elementwise_add "shift: gamma(C) * lnorm + beta(C)"
|
||||
*/
|
||||
class LayerNormFusePass : public FusePassBase {
|
||||
public:
|
||||
virtual ~LayerNormFusePass() {}
|
||||
|
||||
protected:
|
||||
void ApplyImpl(ir::Graph *graph) const override;
|
||||
|
||||
private:
|
||||
const std::string scope_name_{"layer_norm_fuse"};
|
||||
};
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
@ -0,0 +1,199 @@
|
||||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include "paddle/fluid/framework/framework.pb.h"
|
||||
#include "paddle/fluid/framework/ir/layer_norm_fuse_pass.h"
|
||||
#include "paddle/fluid/framework/ir/pass_test_util.h"
|
||||
#include "paddle/fluid/framework/naive_executor.h"
|
||||
#include "paddle/fluid/framework/op_desc.h"
|
||||
#include "paddle/fluid/framework/op_version_registry.h"
|
||||
#include "paddle/fluid/framework/program_desc.h"
|
||||
#include "paddle/fluid/framework/scope.h"
|
||||
#include "paddle/fluid/platform/errors.h"
|
||||
#include "paddle/fluid/platform/place.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace framework {
|
||||
namespace ir {
|
||||
|
||||
namespace {
|
||||
|
||||
ProgramDesc BuildGraphProgram() {
|
||||
auto prog = test::BuildProgramDesc(
|
||||
{"x", "x_mean_out", "x_sub_mean_out", "x_sub_mean_sqr_out", "std_dev_out",
|
||||
"std_dev_eps_out", "std_dev_eps_sqrt_out", "division_out", "scale_out",
|
||||
"shift_out"},
|
||||
{"sqr_pow", "eps", "gamma", "beta"});
|
||||
|
||||
const auto& block_desc = prog.Block(0);
|
||||
auto* x_var_desc = block_desc.FindVar("x");
|
||||
x_var_desc->SetDataType(proto::VarType::FP32);
|
||||
x_var_desc->SetShape({3, 32, 48});
|
||||
|
||||
auto* eps_var_desc = block_desc.FindVar("eps");
|
||||
eps_var_desc->SetDataType(proto::VarType::FP32);
|
||||
eps_var_desc->SetShape({1});
|
||||
|
||||
auto* gamma_var_desc = block_desc.FindVar("gamma");
|
||||
gamma_var_desc->SetDataType(proto::VarType::FP32);
|
||||
gamma_var_desc->SetShape({48});
|
||||
|
||||
auto* beta_var_desc = block_desc.FindVar("beta");
|
||||
beta_var_desc->SetDataType(proto::VarType::FP32);
|
||||
beta_var_desc->SetShape({48});
|
||||
|
||||
auto* x_mean = test::CreateOp(&prog, "reduce_mean", {{"X", "x"}},
|
||||
{{"Out", "x_mean_out"}}, false);
|
||||
x_mean->SetAttr("dim", std::vector<int>{-1});
|
||||
x_mean->SetAttr("keep_dim", true);
|
||||
x_mean->SetAttr("reduce_all", false);
|
||||
|
||||
test::CreateOp(&prog, "elementwise_sub", {{"X", "x"}, {"Y", "x_mean_out"}},
|
||||
{{"Out", "x_sub_mean_out"}}, false);
|
||||
test::CreateOp(&prog, "elementwise_pow",
|
||||
{{"X", "x_sub_mean_out"}, {"Y", "sqr_pow"}},
|
||||
{{"Out", "x_sub_mean_sqr_out"}}, false);
|
||||
auto* std_dev =
|
||||
test::CreateOp(&prog, "reduce_mean", {{"X", "x_sub_mean_sqr_out"}},
|
||||
{{"Out", "std_dev_out"}}, false);
|
||||
std_dev->SetAttr("dim", std::vector<int>{-1});
|
||||
std_dev->SetAttr("keep_dim", true);
|
||||
std_dev->SetAttr("reduce_all", false);
|
||||
|
||||
test::CreateOp(&prog, "elementwise_add", {{"X", "std_dev_out"}, {"Y", "eps"}},
|
||||
{{"Out", "std_dev_eps_out"}}, false);
|
||||
test::CreateOp(&prog, "sqrt", {{"X", "std_dev_eps_out"}},
|
||||
{{"Out", "std_dev_eps_sqrt_out"}}, false);
|
||||
test::CreateOp(&prog, "elementwise_div",
|
||||
{{"X", "x_sub_mean_out"}, {"Y", "std_dev_eps_sqrt_out"}},
|
||||
{{"Out", "division_out"}}, false);
|
||||
test::CreateOp(&prog, "elementwise_mul",
|
||||
{{"X", "division_out"}, {"Y", "gamma"}},
|
||||
{{"Out", "scale_out"}}, false);
|
||||
test::CreateOp(&prog, "elementwise_add", {{"X", "scale_out"}, {"Y", "beta"}},
|
||||
{{"Out", "shift_out"}}, false);
|
||||
return prog;
|
||||
}
|
||||
|
||||
bool CheckFusedSubgraphOpsCount(const Graph& graph) {
|
||||
return test::AssertOpsCount(graph, {{"reduce_mean", 0},
|
||||
{"elementwise_sub", 0},
|
||||
{"elementwise_pow", 0},
|
||||
{"elementwise_add", 0},
|
||||
{"sqrt", 0},
|
||||
{"elementwise_div", 0},
|
||||
{"elementwise_mul", 0},
|
||||
{"layer_norm", 1}});
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
// ------------------------------ Test cases -----------------------------------
|
||||
|
||||
TEST(FuseLayerNormPass, TestFuse) {
|
||||
ProgramDesc prog = BuildGraphProgram();
|
||||
|
||||
Graph graph(prog);
|
||||
constexpr int removed_nodes = 19;
|
||||
// LayerNorm + outputs: {Mean, Variance}
|
||||
constexpr int added_nodes = 3;
|
||||
|
||||
auto place = paddle::platform::CPUPlace();
|
||||
NaiveExecutor exe{place};
|
||||
Scope scope;
|
||||
float eps_value = 1e-5f;
|
||||
// Init scope, as it is used in pass
|
||||
exe.CreateVariables(prog, 0, true, &scope);
|
||||
test::InitLoDTensorHolder<float>(&scope, place, "eps", {1}, &eps_value);
|
||||
|
||||
graph.SetNotOwned(kParamScopeAttr, &scope);
|
||||
EXPECT_TRUE(test::RunPassAndAssert(&graph, "layer_norm_fuse_pass", "x",
|
||||
"shift_out", removed_nodes, added_nodes));
|
||||
EXPECT_TRUE(CheckFusedSubgraphOpsCount(graph));
|
||||
|
||||
for (const auto* node : graph.Nodes()) {
|
||||
if (node->IsOp() && node->Op()->Type() == "layer_norm") {
|
||||
const auto* op = node->Op();
|
||||
ASSERT_TRUE(op->HasAttr("is_test"));
|
||||
EXPECT_TRUE(BOOST_GET_CONST(bool, op->GetAttr("is_test")));
|
||||
ASSERT_TRUE(op->HasAttr("begin_norm_axis"));
|
||||
ASSERT_TRUE(op->HasAttr("epsilon"));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST(FuseLayerNormPass, TestInvalidEpsNumel) {
|
||||
ProgramDesc prog = BuildGraphProgram();
|
||||
|
||||
auto* eps_var_desc = prog.Block(0).FindVar("eps");
|
||||
eps_var_desc->SetDataType(proto::VarType::FP32);
|
||||
eps_var_desc->SetShape({2});
|
||||
|
||||
Graph graph(prog);
|
||||
constexpr int removed_nodes = 19;
|
||||
constexpr int added_nodes = 3;
|
||||
|
||||
auto place = paddle::platform::CPUPlace();
|
||||
NaiveExecutor exe{place};
|
||||
Scope scope;
|
||||
auto eps_values = std::vector<float>{1e-5f, 1e-5f};
|
||||
// Init scope, as it is used in pass
|
||||
exe.CreateVariables(prog, 0, true, &scope);
|
||||
test::InitLoDTensorHolder<float>(&scope, place, "eps", {2},
|
||||
eps_values.data());
|
||||
|
||||
graph.SetNotOwned(kParamScopeAttr, &scope);
|
||||
EXPECT_THROW(test::RunPassAndAssert(&graph, "layer_norm_fuse_pass", "x",
|
||||
"shift_out", removed_nodes, added_nodes),
|
||||
paddle::platform::EnforceNotMet);
|
||||
}
|
||||
|
||||
TEST(FuseLayerNormPass, TestInvalidEpsDataType) {
|
||||
ProgramDesc prog = BuildGraphProgram();
|
||||
|
||||
auto* eps_var_desc = prog.Block(0).FindVar("eps");
|
||||
eps_var_desc->SetDataType(proto::VarType::FP64);
|
||||
eps_var_desc->SetShape({1});
|
||||
|
||||
Graph graph(prog);
|
||||
constexpr int removed_nodes = 19;
|
||||
constexpr int added_nodes = 3;
|
||||
|
||||
auto place = paddle::platform::CPUPlace();
|
||||
NaiveExecutor exe{place};
|
||||
Scope scope;
|
||||
double eps_value = 1e-5;
|
||||
// Init scope, as it is used in pass
|
||||
exe.CreateVariables(prog, 0, true, &scope);
|
||||
test::InitLoDTensorHolder<double>(&scope, place, "eps", {1}, &eps_value);
|
||||
|
||||
graph.SetNotOwned(kParamScopeAttr, &scope);
|
||||
EXPECT_THROW(test::RunPassAndAssert(&graph, "layer_norm_fuse_pass", "x",
|
||||
"shift_out", removed_nodes, added_nodes),
|
||||
paddle::platform::EnforceNotMet);
|
||||
}
|
||||
|
||||
TEST(FuseLayerNormPass, pass_op_version_check) {
|
||||
ASSERT_TRUE(
|
||||
paddle::framework::compatible::PassVersionCheckerRegistrar::GetInstance()
|
||||
.IsPassCompatible("layer_norm_fuse_pass"));
|
||||
}
|
||||
|
||||
} // namespace ir
|
||||
} // namespace framework
|
||||
} // namespace paddle
|
||||
|
||||
USE_PASS(layer_norm_fuse_pass);
|
@ -0,0 +1,64 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Test for fusion of subgraph expressing layer normalization."""
|
||||
|
||||
import unittest
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
from inference_pass_test import InferencePassTest
|
||||
from paddle import enable_static
|
||||
from paddle.fluid.core import PassVersionChecker
|
||||
|
||||
|
||||
class LayerNormFusePassTest(InferencePassTest):
|
||||
def setUp(self):
|
||||
with fluid.program_guard(self.main_program, self.startup_program):
|
||||
data = fluid.data(name="data", shape=[3, 64, 120], dtype="float32")
|
||||
sqr_pow = fluid.layers.fill_constant(
|
||||
shape=[1], value=2, dtype="float32")
|
||||
eps = fluid.layers.fill_constant(
|
||||
shape=[1], value=1e-5, dtype="float32")
|
||||
gamma = fluid.layers.create_parameter(
|
||||
shape=[120], dtype="float32", is_bias=True)
|
||||
beta = fluid.layers.create_parameter(
|
||||
shape=[120], dtype="float32", is_bias=True)
|
||||
|
||||
x_mean_out = fluid.layers.reduce_mean(data, dim=-1, keep_dim=True)
|
||||
x_sub_mean_out = fluid.layers.elementwise_sub(data, x_mean_out)
|
||||
x_sub_mean_sqr_out = fluid.layers.elementwise_pow(x_sub_mean_out,
|
||||
sqr_pow)
|
||||
std_dev_out = fluid.layers.reduce_mean(
|
||||
x_sub_mean_sqr_out, dim=-1, keep_dim=True)
|
||||
std_dev_eps_out = fluid.layers.elementwise_add(std_dev_out, eps)
|
||||
std_dev_eps_sqrt_out = fluid.layers.sqrt(std_dev_eps_out)
|
||||
division_out = fluid.layers.elementwise_div(x_sub_mean_out,
|
||||
std_dev_eps_sqrt_out)
|
||||
scale_out = fluid.layers.elementwise_mul(division_out, gamma)
|
||||
shift_out = fluid.layers.elementwise_add(scale_out, beta)
|
||||
|
||||
self.feeds = {
|
||||
"data": np.random.random((3, 64, 120)).astype("float32"),
|
||||
}
|
||||
self.fetch_list = [shift_out]
|
||||
|
||||
def test_check_output(self):
|
||||
use_gpu = False
|
||||
self.check_output_with_option(use_gpu)
|
||||
self.assertTrue(PassVersionChecker.IsCompatible("layer_norm_fuse_pass"))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
enable_static()
|
||||
unittest.main()
|
Loading…
Reference in new issue