parent
a79a3ea2f0
commit
4f6e9e3ac3
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,25 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
#include "paddle/fluid/framework/eigen.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,70 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from math import log
|
||||||
|
from math import exp
|
||||||
|
from op_test import OpTest
|
||||||
|
from scipy.special import logit
|
||||||
|
from scipy.special import expit
|
||||||
|
import unittest
|
||||||
|
|
||||||
|
|
||||||
|
class TestTeacherStudentSigmoidLossOp(OpTest):
|
||||||
|
"""
|
||||||
|
Test teacher_student_sigmoid_loss with discrete one-hot labels.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def setUp(self):
|
||||||
|
"""
|
||||||
|
ut
|
||||||
|
"""
|
||||||
|
self.op_type = "teacher_student_sigmoid_loss"
|
||||||
|
batch_size = 16
|
||||||
|
num_classes = 1
|
||||||
|
self.inputs = {
|
||||||
|
'X': logit(
|
||||||
|
np.random.uniform(0, 1, (batch_size, num_classes))
|
||||||
|
.astype("float32")),
|
||||||
|
'Label': np.random.uniform(0, 2, (batch_size, num_classes))
|
||||||
|
.astype("float32")
|
||||||
|
}
|
||||||
|
outs = []
|
||||||
|
for index, label in enumerate(self.inputs["Label"]):
|
||||||
|
x = self.inputs["X"][index]
|
||||||
|
if label < -1.0:
|
||||||
|
outs.append(max(x, 0.0) + log(1.0 + exp(-abs(x))))
|
||||||
|
elif label < 0.0:
|
||||||
|
outs.append(max(x, 0.0) - x + log(1.0 + exp(-abs(x))))
|
||||||
|
elif label < 1.0:
|
||||||
|
outs.append(max(x, 0.0) + log(1.0 + exp(-abs(x))) + \
|
||||||
|
max(x, 0.0) - x * label + log(1.0 + exp(-abs(x))))
|
||||||
|
#print "33 python x:", x, "python label:", label, "term1:", max(x, 0.0) + log(1.0 + exp(-abs(x))), "term2:", max(x, 0.0) - x * label + log(1.0 + exp(-abs(x)))
|
||||||
|
else:
|
||||||
|
outs.append(max(x, 0.0) - x + log(1.0 + exp(-abs(x))) + \
|
||||||
|
max(x, 0.0) - x * (label - 1.0) + log(1.0 + exp(-abs(x))))
|
||||||
|
#print "44 python x:", x, "python label:", label, "term1:", max(x, 0.0) - x + log(1.0 + exp(-abs(x))), "term2:", max(x, 0.0) - x * (label - 1.0) + log(1.0 + exp(-abs(x)))
|
||||||
|
self.outputs = {'Y': np.array(outs)}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
"""
|
||||||
|
ut
|
||||||
|
"""
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
"""
|
||||||
|
ut
|
||||||
|
"""
|
||||||
|
self.check_grad(["X"], "Y", numeric_grad_delta=0.005)
|
Loading…
Reference in new issue