parent
311334e083
commit
4fee15e860
@ -1,101 +0,0 @@
|
|||||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
from __future__ import print_function
|
|
||||||
import numpy as np
|
|
||||||
import paddle.v2 as paddle
|
|
||||||
import paddle.v2.fluid as fluid
|
|
||||||
|
|
||||||
|
|
||||||
def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32,
|
|
||||||
hid_dim=32):
|
|
||||||
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
|
|
||||||
conv_3 = fluid.nets.sequence_conv_pool(
|
|
||||||
input=emb,
|
|
||||||
num_filters=hid_dim,
|
|
||||||
filter_size=3,
|
|
||||||
act="tanh",
|
|
||||||
pool_type="sqrt")
|
|
||||||
conv_4 = fluid.nets.sequence_conv_pool(
|
|
||||||
input=emb,
|
|
||||||
num_filters=hid_dim,
|
|
||||||
filter_size=4,
|
|
||||||
act="tanh",
|
|
||||||
pool_type="sqrt")
|
|
||||||
prediction = fluid.layers.fc(input=[conv_3, conv_4],
|
|
||||||
size=class_dim,
|
|
||||||
act="softmax")
|
|
||||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
||||||
avg_cost = fluid.layers.mean(x=cost)
|
|
||||||
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
|
|
||||||
adam_optimizer.minimize(avg_cost)
|
|
||||||
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
|
|
||||||
return avg_cost, accuracy, accuracy.metrics[0]
|
|
||||||
|
|
||||||
|
|
||||||
def to_lodtensor(data, place):
|
|
||||||
seq_lens = [len(seq) for seq in data]
|
|
||||||
cur_len = 0
|
|
||||||
lod = [cur_len]
|
|
||||||
for l in seq_lens:
|
|
||||||
cur_len += l
|
|
||||||
lod.append(cur_len)
|
|
||||||
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
|
||||||
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
|
||||||
res = fluid.LoDTensor()
|
|
||||||
res.set(flattened_data, place)
|
|
||||||
res.set_lod([lod])
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
BATCH_SIZE = 100
|
|
||||||
PASS_NUM = 5
|
|
||||||
|
|
||||||
word_dict = paddle.dataset.imdb.word_dict()
|
|
||||||
dict_dim = len(word_dict)
|
|
||||||
class_dim = 2
|
|
||||||
|
|
||||||
data = fluid.layers.data(
|
|
||||||
name="words", shape=[1], dtype="int64", lod_level=1)
|
|
||||||
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
|
||||||
cost, accuracy, acc_out = convolution_net(
|
|
||||||
data, label, input_dim=dict_dim, class_dim=class_dim)
|
|
||||||
|
|
||||||
train_data = paddle.batch(
|
|
||||||
paddle.reader.shuffle(
|
|
||||||
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
|
||||||
batch_size=BATCH_SIZE)
|
|
||||||
place = fluid.CPUPlace()
|
|
||||||
exe = fluid.Executor(place)
|
|
||||||
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
|
||||||
|
|
||||||
exe.run(fluid.default_startup_program())
|
|
||||||
|
|
||||||
for pass_id in xrange(PASS_NUM):
|
|
||||||
accuracy.reset(exe)
|
|
||||||
for data in train_data():
|
|
||||||
cost_val, acc_val = exe.run(fluid.default_main_program(),
|
|
||||||
feed=feeder.feed(data),
|
|
||||||
fetch_list=[cost, acc_out])
|
|
||||||
pass_acc = accuracy.eval(exe)
|
|
||||||
print("cost=" + str(cost_val) + " acc=" + str(acc_val) +
|
|
||||||
" pass_acc=" + str(pass_acc))
|
|
||||||
if cost_val < 1.0 and pass_acc > 0.8:
|
|
||||||
exit(0)
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
@ -1,160 +0,0 @@
|
|||||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
||||||
#
|
|
||||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
||||||
# you may not use this file except in compliance with the License.
|
|
||||||
# You may obtain a copy of the License at
|
|
||||||
#
|
|
||||||
# http://www.apache.org/licenses/LICENSE-2.0
|
|
||||||
#
|
|
||||||
# Unless required by applicable law or agreed to in writing, software
|
|
||||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
||||||
# See the License for the specific language governing permissions and
|
|
||||||
# limitations under the License.
|
|
||||||
|
|
||||||
import numpy as np
|
|
||||||
import paddle.v2 as paddle
|
|
||||||
import paddle.v2.fluid as fluid
|
|
||||||
from paddle.v2.fluid.layer_helper import LayerHelper
|
|
||||||
|
|
||||||
|
|
||||||
def lstm(x, c_pre_init, hidden_dim, forget_bias=None):
|
|
||||||
"""
|
|
||||||
This function helps create an operator for the LSTM (Long Short Term
|
|
||||||
Memory) cell that can be used inside an RNN.
|
|
||||||
"""
|
|
||||||
helper = LayerHelper('lstm_unit', **locals())
|
|
||||||
rnn = fluid.layers.StaticRNN()
|
|
||||||
with rnn.step():
|
|
||||||
c_pre = rnn.memory(init=c_pre_init)
|
|
||||||
x_t = rnn.step_input(x)
|
|
||||||
|
|
||||||
before_fc = fluid.layers.concat(input=[x_t, c_pre], axis=1)
|
|
||||||
after_fc = fluid.layers.fc(input=before_fc, size=hidden_dim * 4)
|
|
||||||
|
|
||||||
dtype = x.dtype
|
|
||||||
c = helper.create_tmp_variable(dtype)
|
|
||||||
h = helper.create_tmp_variable(dtype)
|
|
||||||
|
|
||||||
helper.append_op(
|
|
||||||
type='lstm_unit',
|
|
||||||
inputs={"X": after_fc,
|
|
||||||
"C_prev": c_pre},
|
|
||||||
outputs={"C": c,
|
|
||||||
"H": h},
|
|
||||||
attrs={"forget_bias": forget_bias})
|
|
||||||
|
|
||||||
rnn.update_memory(c_pre, c)
|
|
||||||
rnn.output(h)
|
|
||||||
|
|
||||||
return rnn()
|
|
||||||
|
|
||||||
|
|
||||||
def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50):
|
|
||||||
data = fluid.layers.data(
|
|
||||||
name="words",
|
|
||||||
shape=[seq_len * batch_size, 1],
|
|
||||||
append_batch_size=False,
|
|
||||||
dtype="int64",
|
|
||||||
lod_level=1)
|
|
||||||
label = fluid.layers.data(
|
|
||||||
name="label",
|
|
||||||
shape=[batch_size, 1],
|
|
||||||
append_batch_size=False,
|
|
||||||
dtype="int64")
|
|
||||||
|
|
||||||
emb = fluid.layers.embedding(input=data, size=[dict_dim, emb_dim])
|
|
||||||
emb = fluid.layers.reshape(x=emb, shape=[batch_size, seq_len, emb_dim])
|
|
||||||
emb = fluid.layers.transpose(x=emb, perm=[1, 0, 2])
|
|
||||||
|
|
||||||
c_pre_init = fluid.layers.fill_constant(
|
|
||||||
dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0)
|
|
||||||
c_pre_init.stop_gradient = False
|
|
||||||
layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim)
|
|
||||||
layer_1_out = fluid.layers.transpose(x=layer_1_out, perm=[1, 0, 2])
|
|
||||||
|
|
||||||
prediction = fluid.layers.fc(input=layer_1_out,
|
|
||||||
size=class_dim,
|
|
||||||
act="softmax")
|
|
||||||
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
||||||
|
|
||||||
avg_cost = fluid.layers.mean(x=cost)
|
|
||||||
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
|
|
||||||
adam_optimizer.minimize(avg_cost)
|
|
||||||
acc = fluid.layers.accuracy(input=prediction, label=label)
|
|
||||||
|
|
||||||
return avg_cost, acc
|
|
||||||
|
|
||||||
|
|
||||||
def to_lodtensor(data, place):
|
|
||||||
seq_lens = [len(seq) for seq in data]
|
|
||||||
cur_len = 0
|
|
||||||
lod = [cur_len]
|
|
||||||
for l in seq_lens:
|
|
||||||
cur_len += l
|
|
||||||
lod.append(cur_len)
|
|
||||||
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
|
||||||
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
|
||||||
res = fluid.LoDTensor()
|
|
||||||
res.set(flattened_data, place)
|
|
||||||
res.set_lod([lod])
|
|
||||||
return res
|
|
||||||
|
|
||||||
|
|
||||||
def chop_data(data, chop_len=80, batch_size=50):
|
|
||||||
data = [(x[0][:chop_len], x[1]) for x in data if len(x[0]) >= chop_len]
|
|
||||||
|
|
||||||
return data[:batch_size]
|
|
||||||
|
|
||||||
|
|
||||||
def prepare_feed_data(data, place):
|
|
||||||
tensor_words = to_lodtensor(map(lambda x: x[0], data), place)
|
|
||||||
|
|
||||||
label = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
||||||
label = label.reshape([len(label), 1])
|
|
||||||
tensor_label = fluid.LoDTensor()
|
|
||||||
tensor_label.set(label, place)
|
|
||||||
|
|
||||||
return tensor_words, tensor_label
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
|
||||||
BATCH_SIZE = 100
|
|
||||||
PASS_NUM = 5
|
|
||||||
|
|
||||||
word_dict = paddle.dataset.imdb.word_dict()
|
|
||||||
print "load word dict successfully"
|
|
||||||
dict_dim = len(word_dict)
|
|
||||||
class_dim = 2
|
|
||||||
|
|
||||||
cost, acc = lstm_net(dict_dim=dict_dim, class_dim=class_dim)
|
|
||||||
|
|
||||||
train_data = paddle.batch(
|
|
||||||
paddle.reader.shuffle(
|
|
||||||
paddle.dataset.imdb.train(word_dict), buf_size=BATCH_SIZE * 10),
|
|
||||||
batch_size=BATCH_SIZE)
|
|
||||||
place = fluid.CPUPlace()
|
|
||||||
exe = fluid.Executor(place)
|
|
||||||
|
|
||||||
exe.run(fluid.default_startup_program())
|
|
||||||
|
|
||||||
for pass_id in xrange(PASS_NUM):
|
|
||||||
for data in train_data():
|
|
||||||
chopped_data = chop_data(data)
|
|
||||||
tensor_words, tensor_label = prepare_feed_data(chopped_data, place)
|
|
||||||
|
|
||||||
outs = exe.run(fluid.default_main_program(),
|
|
||||||
feed={"words": tensor_words,
|
|
||||||
"label": tensor_label},
|
|
||||||
fetch_list=[cost, acc])
|
|
||||||
cost_val = np.array(outs[0])
|
|
||||||
acc_val = np.array(outs[1])
|
|
||||||
|
|
||||||
print("cost=" + str(cost_val) + " acc=" + str(acc_val))
|
|
||||||
if acc_val > 0.7:
|
|
||||||
exit(0)
|
|
||||||
exit(1)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
main()
|
|
Loading…
Reference in new issue