parent
0ca6274451
commit
4ff6bc175a
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,33 @@
|
||||
/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
#include "paddle/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
template <typename Place, typename T>
|
||||
class RowConvKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override;
|
||||
};
|
||||
|
||||
template <typename Place, typename T>
|
||||
class RowConvGradKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext &context) const override;
|
||||
};
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
@ -0,0 +1,95 @@
|
||||
import unittest
|
||||
import numpy as np
|
||||
from op_test import OpTest
|
||||
|
||||
|
||||
def row_conv_forward(x, lod, wt):
|
||||
out = np.zeros_like(x)
|
||||
seq_info = lod[0]
|
||||
num_sequences = len(seq_info) - 1
|
||||
context_length = wt.shape[0]
|
||||
|
||||
for i in range(num_sequences): # loop over number of sequences
|
||||
start = seq_info[i]
|
||||
end = seq_info[i + 1]
|
||||
curinput = x[start:end, :]
|
||||
curoutput = out[start:end, :]
|
||||
|
||||
cur_timesteps = end - start
|
||||
for j in range(cur_timesteps): # loop over different timesteps
|
||||
for k in range(context_length):
|
||||
|
||||
if j + k >= cur_timesteps:
|
||||
continue
|
||||
curoutput[j, :] += curinput[j + k, :] * wt[k, :]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class TestRowConvOp1(OpTest):
|
||||
def setUp(self):
|
||||
|
||||
self.op_type = "row_conv"
|
||||
lod = [[0, 2, 5, 7]]
|
||||
T = lod[0][-1]
|
||||
D = 16
|
||||
context_length = 2
|
||||
|
||||
x = np.random.random((T, D)).astype("float32")
|
||||
wt = np.random.random((context_length, D)).astype("float32")
|
||||
self.inputs = {'X': (x, lod), 'Filter': wt}
|
||||
|
||||
out = row_conv_forward(x, lod, wt)
|
||||
self.outputs = {'Out': (out, lod)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05)
|
||||
|
||||
def test_check_grad_ignore_x(self):
|
||||
self.check_grad(
|
||||
['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))
|
||||
|
||||
def test_check_grad_ignore_wt(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter'))
|
||||
|
||||
|
||||
class TestRowConvOp2(OpTest):
|
||||
def setUp(self):
|
||||
|
||||
self.op_type = "row_conv"
|
||||
lod = [[0, 20, 50, 100]]
|
||||
T = lod[0][-1]
|
||||
D = 35
|
||||
context_length = 35
|
||||
|
||||
x = np.random.random((T, D)).astype("float32")
|
||||
wt = np.random.random((context_length, D)).astype("float32")
|
||||
self.inputs = {'X': (x, lod), 'Filter': wt}
|
||||
|
||||
out = row_conv_forward(x, lod, wt)
|
||||
self.outputs = {'Out': (out, lod)}
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output()
|
||||
|
||||
#max_relative_error is increased from 0.05 to 0.06 as for higher
|
||||
#dimensional input, the dX on CPU for some values has max_rel_error
|
||||
#slightly more than 0.05
|
||||
def test_check_grad_normal(self):
|
||||
self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.06)
|
||||
|
||||
def test_check_grad_ignore_x(self):
|
||||
self.check_grad(
|
||||
['Filter'], 'Out', max_relative_error=0.06, no_grad_set=set('X'))
|
||||
|
||||
def test_check_grad_ignore_wt(self):
|
||||
self.check_grad(
|
||||
['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Filter'))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
Loading…
Reference in new issue