add softmax xpu kernel (#27700)
parent
65c06141b6
commit
5098891fdf
@ -0,0 +1,99 @@
|
||||
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#ifdef PADDLE_WITH_XPU
|
||||
|
||||
#include "paddle/fluid/operators/softmax_op.h"
|
||||
#include "paddle/fluid/framework/op_registry.h"
|
||||
|
||||
namespace paddle {
|
||||
namespace operators {
|
||||
|
||||
using Tensor = framework::Tensor;
|
||||
using DDim = framework::DDim;
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SoftmaxXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* x = context.Input<Tensor>("X");
|
||||
auto* out = context.Output<Tensor>("Out");
|
||||
const int rank = x->dims().size();
|
||||
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
|
||||
PADDLE_ENFORCE_EQ(axis == -1 || axis == rank - 1, true,
|
||||
platform::errors::InvalidArgument(
|
||||
"xpu softmax kernel only support last dimension of x "
|
||||
"(axis==-1 or axis==x_dims-1), but received axis: "
|
||||
"%d, x's shape: %s.",
|
||||
axis, x->dims()));
|
||||
|
||||
// allocate memory on device.
|
||||
out->mutable_data<T>(context.GetPlace());
|
||||
|
||||
const int n = SizeToAxis(axis, x->dims());
|
||||
const int d = SizeFromAxis(axis, x->dims());
|
||||
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
int r = xpu::softmax2d_forward(dev_ctx.x_context(), x->data<float>(),
|
||||
out->data<float>(), n, d, d <= 2048);
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External("XPU API(softmax2d_forward) return wrong "
|
||||
"value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
|
||||
template <typename DeviceContext, typename T>
|
||||
class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
|
||||
public:
|
||||
void Compute(const framework::ExecutionContext& context) const override {
|
||||
auto* out = context.Input<Tensor>("Out");
|
||||
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
||||
const int rank = dx->dims().size();
|
||||
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
|
||||
|
||||
// allocate memory on device.
|
||||
dx->mutable_data<T>(context.GetPlace());
|
||||
|
||||
const int n = SizeToAxis(axis, dx->dims());
|
||||
const int d = SizeFromAxis(axis, dx->dims());
|
||||
|
||||
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||
int r =
|
||||
xpu::softmax2d_backward(dev_ctx.x_context(), out->data<float>(),
|
||||
dout->data<float>(), dx->data<float>(), n, d);
|
||||
PADDLE_ENFORCE_EQ(
|
||||
r, XPU_SUCCESS,
|
||||
platform::errors::External("XPU API(softmax2d_backward) return wrong "
|
||||
"value[%d], please check whether "
|
||||
"Baidu Kunlun Card is properly installed.",
|
||||
r));
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace operators
|
||||
} // namespace paddle
|
||||
|
||||
namespace ops = paddle::operators;
|
||||
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
softmax, ops::SoftmaxXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
REGISTER_OP_XPU_KERNEL(
|
||||
softmax_grad,
|
||||
ops::SoftmaxGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||
|
||||
#endif // PADDLE_WITH_XPU
|
@ -0,0 +1,93 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import paddle
|
||||
import numpy as np
|
||||
import sys
|
||||
import unittest
|
||||
sys.path.append("..")
|
||||
from op_test import OpTest
|
||||
|
||||
paddle.enable_static()
|
||||
np.random.seed(10)
|
||||
|
||||
|
||||
def stable_softmax(x):
|
||||
"""Compute the softmax of vector x in a numerically stable way."""
|
||||
# clip to shiftx, otherwise, when calc loss with
|
||||
# log(exp(shiftx)), may get log(0)=INF
|
||||
shiftx = (x - np.max(x)).clip(-64.)
|
||||
exps = np.exp(shiftx)
|
||||
return exps / np.sum(exps)
|
||||
|
||||
|
||||
def ref_softmax(x, axis=None, dtype=None):
|
||||
x_t = x.copy()
|
||||
if dtype is not None:
|
||||
x_t = x_t.astype(dtype)
|
||||
if axis is None:
|
||||
axis = -1
|
||||
return np.apply_along_axis(stable_softmax, axis, x_t)
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSoftmaxOp(OpTest):
|
||||
def setUp(self):
|
||||
self.op_type = "softmax"
|
||||
self.dtype = np.float32
|
||||
self.shape = [2, 3, 4, 5]
|
||||
self.axis = -1
|
||||
self.set_attrs()
|
||||
|
||||
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
|
||||
out = np.apply_along_axis(stable_softmax, self.axis, x)
|
||||
|
||||
self.inputs = {'X': x}
|
||||
self.outputs = {'Out': out}
|
||||
self.attrs = {'axis': self.axis, 'use_xpu': True}
|
||||
|
||||
def set_attrs(self):
|
||||
pass
|
||||
|
||||
def test_check_output(self):
|
||||
self.check_output_with_place(paddle.XPUPlace(0), atol=1e-4)
|
||||
|
||||
def test_check_grad(self):
|
||||
self.check_grad_with_place(paddle.XPUPlace(0), ['X'], 'Out')
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSoftmaxAxis3(TestXPUSoftmaxOp):
|
||||
def set_attrs(self):
|
||||
self.axis = 3
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSoftmax2D(TestXPUSoftmaxOp):
|
||||
def set_attrs(self):
|
||||
self.shape = [10, 12]
|
||||
|
||||
|
||||
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||
"core is not compiled with XPU")
|
||||
class TestXPUSoftmax3D(TestXPUSoftmaxOp):
|
||||
def set_attrs(self):
|
||||
self.shape = [4, 5, 6]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
unittest.main()
|
Loading…
Reference in new issue