add softmax xpu kernel (#27700)
parent
65c06141b6
commit
5098891fdf
@ -0,0 +1,99 @@
|
|||||||
|
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#ifdef PADDLE_WITH_XPU
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/softmax_op.h"
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using DDim = framework::DDim;
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SoftmaxXPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* x = context.Input<Tensor>("X");
|
||||||
|
auto* out = context.Output<Tensor>("Out");
|
||||||
|
const int rank = x->dims().size();
|
||||||
|
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
|
||||||
|
PADDLE_ENFORCE_EQ(axis == -1 || axis == rank - 1, true,
|
||||||
|
platform::errors::InvalidArgument(
|
||||||
|
"xpu softmax kernel only support last dimension of x "
|
||||||
|
"(axis==-1 or axis==x_dims-1), but received axis: "
|
||||||
|
"%d, x's shape: %s.",
|
||||||
|
axis, x->dims()));
|
||||||
|
|
||||||
|
// allocate memory on device.
|
||||||
|
out->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
const int n = SizeToAxis(axis, x->dims());
|
||||||
|
const int d = SizeFromAxis(axis, x->dims());
|
||||||
|
|
||||||
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||||
|
int r = xpu::softmax2d_forward(dev_ctx.x_context(), x->data<float>(),
|
||||||
|
out->data<float>(), n, d, d <= 2048);
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
r, XPU_SUCCESS,
|
||||||
|
platform::errors::External("XPU API(softmax2d_forward) return wrong "
|
||||||
|
"value[%d], please check whether "
|
||||||
|
"Baidu Kunlun Card is properly installed.",
|
||||||
|
r));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
template <typename DeviceContext, typename T>
|
||||||
|
class SoftmaxGradXPUKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& context) const override {
|
||||||
|
auto* out = context.Input<Tensor>("Out");
|
||||||
|
auto* dout = context.Input<Tensor>(framework::GradVarName("Out"));
|
||||||
|
auto* dx = context.Output<Tensor>(framework::GradVarName("X"));
|
||||||
|
const int rank = dx->dims().size();
|
||||||
|
const int axis = CanonicalAxis(context.Attr<int>("axis"), rank);
|
||||||
|
|
||||||
|
// allocate memory on device.
|
||||||
|
dx->mutable_data<T>(context.GetPlace());
|
||||||
|
|
||||||
|
const int n = SizeToAxis(axis, dx->dims());
|
||||||
|
const int d = SizeFromAxis(axis, dx->dims());
|
||||||
|
|
||||||
|
auto& dev_ctx = context.template device_context<DeviceContext>();
|
||||||
|
int r =
|
||||||
|
xpu::softmax2d_backward(dev_ctx.x_context(), out->data<float>(),
|
||||||
|
dout->data<float>(), dx->data<float>(), n, d);
|
||||||
|
PADDLE_ENFORCE_EQ(
|
||||||
|
r, XPU_SUCCESS,
|
||||||
|
platform::errors::External("XPU API(softmax2d_backward) return wrong "
|
||||||
|
"value[%d], please check whether "
|
||||||
|
"Baidu Kunlun Card is properly installed.",
|
||||||
|
r));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
softmax, ops::SoftmaxXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
REGISTER_OP_XPU_KERNEL(
|
||||||
|
softmax_grad,
|
||||||
|
ops::SoftmaxGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
|
||||||
|
|
||||||
|
#endif // PADDLE_WITH_XPU
|
||||||
@ -0,0 +1,93 @@
|
|||||||
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import numpy as np
|
||||||
|
import sys
|
||||||
|
import unittest
|
||||||
|
sys.path.append("..")
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
paddle.enable_static()
|
||||||
|
np.random.seed(10)
|
||||||
|
|
||||||
|
|
||||||
|
def stable_softmax(x):
|
||||||
|
"""Compute the softmax of vector x in a numerically stable way."""
|
||||||
|
# clip to shiftx, otherwise, when calc loss with
|
||||||
|
# log(exp(shiftx)), may get log(0)=INF
|
||||||
|
shiftx = (x - np.max(x)).clip(-64.)
|
||||||
|
exps = np.exp(shiftx)
|
||||||
|
return exps / np.sum(exps)
|
||||||
|
|
||||||
|
|
||||||
|
def ref_softmax(x, axis=None, dtype=None):
|
||||||
|
x_t = x.copy()
|
||||||
|
if dtype is not None:
|
||||||
|
x_t = x_t.astype(dtype)
|
||||||
|
if axis is None:
|
||||||
|
axis = -1
|
||||||
|
return np.apply_along_axis(stable_softmax, axis, x_t)
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||||
|
"core is not compiled with XPU")
|
||||||
|
class TestXPUSoftmaxOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = "softmax"
|
||||||
|
self.dtype = np.float32
|
||||||
|
self.shape = [2, 3, 4, 5]
|
||||||
|
self.axis = -1
|
||||||
|
self.set_attrs()
|
||||||
|
|
||||||
|
x = np.random.uniform(-1, 1, self.shape).astype(self.dtype)
|
||||||
|
out = np.apply_along_axis(stable_softmax, self.axis, x)
|
||||||
|
|
||||||
|
self.inputs = {'X': x}
|
||||||
|
self.outputs = {'Out': out}
|
||||||
|
self.attrs = {'axis': self.axis, 'use_xpu': True}
|
||||||
|
|
||||||
|
def set_attrs(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output_with_place(paddle.XPUPlace(0), atol=1e-4)
|
||||||
|
|
||||||
|
def test_check_grad(self):
|
||||||
|
self.check_grad_with_place(paddle.XPUPlace(0), ['X'], 'Out')
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||||
|
"core is not compiled with XPU")
|
||||||
|
class TestXPUSoftmaxAxis3(TestXPUSoftmaxOp):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.axis = 3
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||||
|
"core is not compiled with XPU")
|
||||||
|
class TestXPUSoftmax2D(TestXPUSoftmaxOp):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.shape = [10, 12]
|
||||||
|
|
||||||
|
|
||||||
|
@unittest.skipIf(not paddle.is_compiled_with_xpu(),
|
||||||
|
"core is not compiled with XPU")
|
||||||
|
class TestXPUSoftmax3D(TestXPUSoftmaxOp):
|
||||||
|
def set_attrs(self):
|
||||||
|
self.shape = [4, 5, 6]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
unittest.main()
|
||||||
Loading…
Reference in new issue