Merge branch 'develop' into link

avx_docs
Luo Tao 9 years ago
commit 52f6c9a6a9

@ -8,10 +8,13 @@ os:
env:
- JOB=DOCS
- JOB=BUILD_AND_TEST
- JOB=PRE_COMMIT
matrix:
exclude:
- os: osx
env: JOB=DOCS # Only generate documentation in linux
env: JOB=DOCS # Only generate documentation in linux.
- os: osx
env: JOB=PRE_COMMIT # Only check pre-commit hook in linux
addons:
apt:
@ -39,18 +42,23 @@ addons:
- lcov
- graphviz
- swig
- clang-format-3.8
before_install:
- |
if [ ${JOB} == "BUILD_AND_TEST" ]; then
if ! git diff --name-only $TRAVIS_COMMIT_RANGE | grep -qvE '(\.md$)|(\.rst$)|(\.jpg$)|(\.png$)'
local change_list=`git diff --name-only $TRAVIS_COMMIT_RANGE`
if [ $? -eq 0 ]; then # if git diff return no zero, then rerun unit test.
if ! echo ${change_list} | grep -qvE '(\.md$)|(\.rst$)|(\.jpg$)|(\.png$)'
then
echo "Only markdown docs were updated, stopping build process."
exit
fi
fi
fi
- if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then sudo paddle/scripts/travis/before_install.linux.sh; fi
- if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
- pip install wheel protobuf sphinx recommonmark virtualenv numpy sphinx_rtd_theme
- if [[ "$JOB" == "PRE_COMMIT" ]]; then sudo ln -s /usr/bin/clang-format-3.8 /usr/bin/clang-format; fi
- pip install wheel protobuf sphinx recommonmark virtualenv numpy sphinx_rtd_theme pre-commit
script:
- paddle/scripts/travis/main.sh
notifications:

@ -3,8 +3,7 @@ http_archive(
name="protobuf",
url="http://github.com/google/protobuf/archive/v3.1.0.tar.gz",
sha256="0a0ae63cbffc274efb573bdde9a253e3f32e458c41261df51c5dbc5ad541e8f7",
strip_prefix = "protobuf-3.1.0",
)
strip_prefix="protobuf-3.1.0", )
# External dependency to gtest 1.7.0. This method comes from
# https://www.bazel.io/versions/master/docs/tutorial/cpp.html.
@ -13,5 +12,4 @@ new_http_archive(
url="https://github.com/google/googletest/archive/release-1.7.0.zip",
sha256="b58cb7547a28b2c718d1e38aee18a3659c9e3ff52440297e965f5edffe34b6d0",
build_file="third_party/gtest.BUILD",
strip_prefix = "googletest-release-1.7.0",
)
strip_prefix="googletest-release-1.7.0", )

@ -25,4 +25,3 @@ test 4 2 256 512
test 4 2 512 128
test 4 2 512 256
test 4 2 512 512

@ -15,4 +15,3 @@ set -e
wget https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
tar zxf cifar-10-python.tar.gz
rm cifar-10-python.tar.gz

@ -15,5 +15,3 @@ do
gunzip ${fname}.gz
fi
done

@ -14,10 +14,9 @@
from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
assert mode in set([
"generator", "discriminator", "generator_training", "discriminator_training"
])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
@ -38,8 +37,8 @@ sample_dim = 2
settings(
batch_size=128,
learning_rate=1e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
learning_method=AdamOptimizer(beta1=0.5))
def discriminator(sample):
"""
@ -50,71 +49,88 @@ def discriminator(sample):
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0)
bias_attr = ParamAttr(
is_static=is_generator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(input=sample, name="dis_hidden", size=hidden_dim,
hidden = fc_layer(
input=sample,
name="dis_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="dis_hidden2", size=hidden_dim,
hidden2 = fc_layer(
input=hidden,
name="dis_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="dis_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
param_attr=ParamAttr(
is_static=is_generator_training, initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn, name="dis_prob", size=2,
return fc_layer(
input=hidden_bn,
name="dis_prob",
size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0)
bias_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=1.0, initial_std=0)
hidden = fc_layer(input=noise,
hidden = fc_layer(
input=noise,
name="gen_layer_hidden",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=ReluActivation())
hidden2 = fc_layer(input=hidden, name="gen_hidden2", size=hidden_dim,
hidden2 = fc_layer(
input=hidden,
name="gen_hidden2",
size=hidden_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
hidden_bn = batch_norm_layer(hidden2,
hidden_bn = batch_norm_layer(
hidden2,
act=ReluActivation(),
name="gen_layer_hidden_bn",
bias_attr=bias_attr,
param_attr=ParamAttr(is_static=is_discriminator_training,
param_attr=ParamAttr(
is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02),
use_global_stats=False)
return fc_layer(input=hidden_bn,
return fc_layer(
input=hidden_bn,
name="gen_layer1",
size=sample_dim,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
@ -126,7 +142,8 @@ if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:

@ -15,10 +15,9 @@ from paddle.trainer_config_helpers import *
mode = get_config_arg("mode", str, "generator")
dataSource = get_config_arg("data", str, "mnist")
assert mode in set(["generator",
"discriminator",
"generator_training",
"discriminator_training"])
assert mode in set([
"generator", "discriminator", "generator_training", "discriminator_training"
])
is_generator_training = mode == "generator_training"
is_discriminator_training = mode == "discriminator_training"
@ -47,13 +46,22 @@ s8, s16 = int(sample_dim/8), int(sample_dim/16)
settings(
batch_size=128,
learning_rate=2e-4,
learning_method=AdamOptimizer(beta1=0.5)
)
def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name,
param_attr, bias_attr, param_attr_bn, bn, trans=False,
learning_method=AdamOptimizer(beta1=0.5))
def conv_bn(input,
channels,
imgSize,
num_filters,
output_x,
stride,
name,
param_attr,
bias_attr,
param_attr_bn,
bn,
trans=False,
act=ReluActivation()):
"""
conv_bn is a utility function that constructs a convolution/deconv layer
with an optional batch_norm layer
@ -84,16 +92,27 @@ def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name,
nameApx = "_convt"
if bn:
conv = img_conv_layer(input, filter_size=filter_size,
conv = img_conv_layer(
input,
filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx, num_channels=channels,
act=LinearActivation(), groups=1, stride=stride,
padding=padding, bias_attr=bias_attr,
param_attr=param_attr, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None,
name=name + nameApx,
num_channels=channels,
act=LinearActivation(),
groups=1,
stride=stride,
padding=padding,
bias_attr=bias_attr,
param_attr=param_attr,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=trans)
conv_bn = batch_norm_layer(conv,
conv_bn = batch_norm_layer(
conv,
act=act,
name=name + nameApx + "_bn",
bias_attr=bias_attr,
@ -102,46 +121,57 @@ def conv_bn(input, channels, imgSize, num_filters, output_x, stride, name,
return conv_bn
else:
conv = img_conv_layer(input, filter_size=filter_size,
conv = img_conv_layer(
input,
filter_size=filter_size,
num_filters=num_filters,
name=name + nameApx, num_channels=channels,
act=act, groups=1, stride=stride,
padding=padding, bias_attr=bias_attr,
param_attr=param_attr, shared_biases=True, layer_attr=None,
filter_size_y=None, stride_y=None, padding_y=None,
name=name + nameApx,
num_channels=channels,
act=act,
groups=1,
stride=stride,
padding=padding,
bias_attr=bias_attr,
param_attr=param_attr,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=trans)
return conv
def generator(noise):
"""
generator generates a sample given noise
"""
param_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=0.0,
initial_std=0.02)
bias_attr = ParamAttr(is_static=is_discriminator_training,
initial_mean=0.0,
initial_std=0.0)
param_attr_bn=ParamAttr(is_static=is_discriminator_training,
initial_mean=1.0,
initial_std=0.02)
h1 = fc_layer(input=noise,
param_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.02)
bias_attr = ParamAttr(
is_static=is_discriminator_training, initial_mean=0.0, initial_std=0.0)
param_attr_bn = ParamAttr(
is_static=is_discriminator_training, initial_mean=1.0, initial_std=0.02)
h1 = fc_layer(
input=noise,
name="gen_layer_h1",
size=s8 * s8 * gf_dim * 4,
bias_attr=bias_attr,
param_attr=param_attr,
act=LinearActivation())
h1_bn = batch_norm_layer(h1,
h1_bn = batch_norm_layer(
h1,
act=ReluActivation(),
name="gen_layer_h1_bn",
bias_attr=bias_attr,
param_attr=param_attr_bn,
use_global_stats=False)
h2_bn = conv_bn(h1_bn,
h2_bn = conv_bn(
h1_bn,
channels=gf_dim * 4,
output_x=s8,
num_filters=gf_dim * 2,
@ -154,7 +184,8 @@ def generator(noise):
bn=True,
trans=True)
h3_bn = conv_bn(h2_bn,
h3_bn = conv_bn(
h2_bn,
channels=gf_dim * 2,
output_x=s4,
num_filters=gf_dim,
@ -167,8 +198,8 @@ def generator(noise):
bn=True,
trans=True)
return conv_bn(h3_bn,
return conv_bn(
h3_bn,
channels=gf_dim,
output_x=s2,
num_filters=c_dim,
@ -191,18 +222,16 @@ def discriminator(sample):
of the sample is from generator and dimension 1 is the probabblity
of the sample is from real data.
"""
param_attr = ParamAttr(is_static=is_generator_training,
initial_mean=0.0,
initial_std=0.02)
bias_attr = ParamAttr(is_static=is_generator_training,
initial_mean=0.0,
initial_std=0.0)
param_attr_bn=ParamAttr(is_static=is_generator_training,
initial_mean=1.0,
initial_std=0.02)
h0 = conv_bn(sample,
param_attr = ParamAttr(
is_static=is_generator_training, initial_mean=0.0, initial_std=0.02)
bias_attr = ParamAttr(
is_static=is_generator_training, initial_mean=0.0, initial_std=0.0)
param_attr_bn = ParamAttr(
is_static=is_generator_training, initial_mean=1.0, initial_std=0.02)
h0 = conv_bn(
sample,
channels=c_dim,
imgSize=sample_dim,
num_filters=df_dim,
@ -214,7 +243,8 @@ def discriminator(sample):
param_attr_bn=param_attr_bn,
bn=False)
h1_bn = conv_bn(h0,
h1_bn = conv_bn(
h0,
channels=df_dim,
imgSize=s2,
num_filters=df_dim * 2,
@ -226,7 +256,8 @@ def discriminator(sample):
param_attr_bn=param_attr_bn,
bn=True)
h2_bn = conv_bn(h1_bn,
h2_bn = conv_bn(
h1_bn,
channels=df_dim * 2,
imgSize=s4,
num_filters=df_dim * 4,
@ -238,13 +269,15 @@ def discriminator(sample):
param_attr_bn=param_attr_bn,
bn=True)
return fc_layer(input=h2_bn, name="dis_prob", size=2,
return fc_layer(
input=h2_bn,
name="dis_prob",
size=2,
bias_attr=bias_attr,
param_attr=param_attr,
act=SoftmaxActivation())
if is_generator_training:
noise = data_layer(name="noise", size=noise_dim)
sample = generator(noise)
@ -256,7 +289,8 @@ if is_generator_training or is_discriminator_training:
label = data_layer(name="label", size=1)
prob = discriminator(sample)
cost = cross_entropy(input=prob, label=label)
classification_error_evaluator(input=prob, label=label, name=mode+'_error')
classification_error_evaluator(
input=prob, label=label, name=mode + '_error')
outputs(cost)
if is_generator:

@ -24,6 +24,7 @@ from paddle.trainer.config_parser import logger
import py_paddle.swig_paddle as api
import matplotlib.pyplot as plt
def plot2DScatter(data, outputfile):
'''
Plot the data as a 2D scatter plot and save to outputfile
@ -41,9 +42,11 @@ def plot2DScatter(data, outputfile):
plt.scatter(x, y)
plt.savefig(outputfile, bbox_inches='tight')
def CHECK_EQ(a, b):
assert a == b, "a=%s, b=%s" % (a, b)
def copy_shared_parameters(src, dst):
'''
copy the parameters from src to dst
@ -52,11 +55,9 @@ def copy_shared_parameters(src, dst):
:param dst: the destination of the parameters
:type dst: GradientMachine
'''
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
src_params = dict([(p.getName(), p) for p in src_params])
for i in xrange(dst.getParameterSize()):
dst_param = dst.getParameter(i)
src_param = src_params.get(dst_param.getName(), None)
@ -68,14 +69,16 @@ def copy_shared_parameters(src, dst):
dst_value.copyFrom(src_value)
dst_param.setValueUpdated()
def print_parameters(src):
src_params = [src.getParameter(i)
for i in xrange(src.getParameterSize())]
src_params = [src.getParameter(i) for i in xrange(src.getParameterSize())]
print "***************"
for p in src_params:
print "Name is %s" % p.getName()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray()
print "value is %s \n" % p.getBuf(api.PARAMETER_VALUE).copyToNumpyArray(
)
def load_mnist_data(imageFile):
f = open(imageFile, "rb")
@ -93,6 +96,7 @@ def load_mnist_data(imageFile):
f.close()
return data.astype('float32')
def load_cifar_data(cifar_path):
batch_size = 10000
data = numpy.zeros((5 * batch_size, 32 * 32 * 3), dtype="float32")
@ -106,11 +110,13 @@ def load_cifar_data(cifar_path):
data = data / 255.0 * 2.0 - 1.0
return data
# synthesize 2-D uniform data
def load_uniform_data():
data = numpy.random.rand(1000000, 2).astype('float32')
return data
def merge(images, size):
if images.shape[1] == 28 * 28:
h, w, c = 28, 28, 1
@ -124,6 +130,7 @@ def merge(images, size):
((images[idx, :].reshape((h, w, c), order="F").transpose(1, 0, 2) + 1.0) / 2.0 * 255.0)
return img.astype('uint8')
def save_images(images, path):
merged_img = merge(images, [8, 8])
if merged_img.shape[2] == 1:
@ -132,13 +139,16 @@ def save_images(images, path):
im = Image.fromarray(merged_img, mode="RGB")
im.save(path)
def get_real_samples(batch_size, data_np):
return data_np[numpy.random.choice(data_np.shape[0], batch_size,
replace=False),:]
return data_np[numpy.random.choice(
data_np.shape[0], batch_size, replace=False), :]
def get_noise(batch_size, noise_dim):
return numpy.random.normal(size=(batch_size, noise_dim)).astype('float32')
def get_fake_samples(generator_machine, batch_size, noise):
gen_inputs = api.Arguments.createArguments(1)
gen_inputs.setSlotValue(0, api.Matrix.createDenseFromNumpy(noise))
@ -147,12 +157,14 @@ def get_fake_samples(generator_machine, batch_size, noise):
fake_samples = gen_outputs.getSlotValue(0).copyToNumpyMat()
return fake_samples
def get_training_loss(training_machine, inputs):
outputs = api.Arguments.createArguments(0)
training_machine.forward(inputs, outputs, api.PASS_TEST)
loss = outputs.getSlotValue(0).copyToNumpyMat()
return numpy.mean(loss)
def prepare_discriminator_data_batch_pos(batch_size, data_np):
real_samples = get_real_samples(batch_size, data_np)
labels = numpy.ones(batch_size, dtype='int32')
@ -161,6 +173,7 @@ def prepare_discriminator_data_batch_pos(batch_size, data_np):
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
labels = numpy.zeros(batch_size, dtype='int32')
@ -169,6 +182,7 @@ def prepare_discriminator_data_batch_neg(generator_machine, batch_size, noise):
inputs.setSlotIds(1, api.IVector.createVectorFromNumpy(labels))
return inputs
def prepare_generator_data_batch(batch_size, noise):
label = numpy.ones(batch_size, dtype='int32')
inputs = api.Arguments.createArguments(2)
@ -193,10 +207,9 @@ def get_layer_size(model_conf, layer_name):
def main():
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--data_source", help="mnist or cifar or uniform")
parser.add_argument("--use_gpu", default="1",
help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0",
help="the gpu_id parameter")
parser.add_argument(
"--use_gpu", default="1", help="1 means use gpu for training")
parser.add_argument("--gpu_id", default="0", help="the gpu_id parameter")
args = parser.parse_args()
data_source = args.data_source
use_gpu = args.use_gpu
@ -209,8 +222,9 @@ def main():
if not os.path.exists("./%s_params/" % data_source):
os.makedirs("./%s_params/" % data_source)
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10', '--log_period=100',
'--gpu_id=' + args.gpu_id, '--save_dir=' + "./%s_params/" % data_source)
api.initPaddle('--use_gpu=' + use_gpu, '--dot_period=10',
'--log_period=100', '--gpu_id=' + args.gpu_id,
'--save_dir=' + "./%s_params/" % data_source)
if data_source == "uniform":
conf = "gan_conf.py"
@ -220,7 +234,8 @@ def main():
num_iter = 1000
gen_conf = parse_config(conf, "mode=generator_training,data=" + data_source)
dis_conf = parse_config(conf, "mode=discriminator_training,data=" + data_source)
dis_conf = parse_config(conf,
"mode=discriminator_training,data=" + data_source)
generator_conf = parse_config(conf, "mode=generator,data=" + data_source)
batch_size = dis_conf.opt_config.batch_size
noise_dim = get_layer_size(gen_conf.model_config, "noise")
@ -245,11 +260,9 @@ def main():
generator_machine = api.GradientMachine.createFromConfigProto(
generator_conf.model_config)
dis_trainer = api.Trainer.create(
dis_conf, dis_training_machine)
dis_trainer = api.Trainer.create(dis_conf, dis_training_machine)
gen_trainer = api.Trainer.create(
gen_conf, gen_training_machine)
gen_trainer = api.Trainer.create(gen_conf, gen_training_machine)
dis_trainer.startTrain()
gen_trainer.startTrain()
@ -272,21 +285,23 @@ def main():
noise = get_noise(batch_size, noise_dim)
data_batch_dis_pos = prepare_discriminator_data_batch_pos(
batch_size, data_np)
dis_loss_pos = get_training_loss(dis_training_machine, data_batch_dis_pos)
dis_loss_pos = get_training_loss(dis_training_machine,
data_batch_dis_pos)
data_batch_dis_neg = prepare_discriminator_data_batch_neg(
generator_machine, batch_size, noise)
dis_loss_neg = get_training_loss(dis_training_machine, data_batch_dis_neg)
dis_loss_neg = get_training_loss(dis_training_machine,
data_batch_dis_neg)
dis_loss = (dis_loss_pos + dis_loss_neg) / 2.0
# Do forward pass in generator to get the gen_loss
data_batch_gen = prepare_generator_data_batch(
batch_size, noise)
data_batch_gen = prepare_generator_data_batch(batch_size, noise)
gen_loss = get_training_loss(gen_training_machine, data_batch_gen)
if i % 100 == 0:
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos, dis_loss_neg)
print "d_pos_loss is %s d_neg_loss is %s" % (dis_loss_pos,
dis_loss_neg)
print "d_loss is %s g_loss is %s" % (dis_loss, gen_loss)
# Decide which network to train based on the training history
@ -300,7 +315,8 @@ def main():
curr_strike = 1
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_neg)
dis_trainer.trainOneDataBatch(batch_size, data_batch_dis_pos)
copy_shared_parameters(dis_training_machine, gen_training_machine)
copy_shared_parameters(dis_training_machine,
gen_training_machine)
else:
if curr_train == "gen":
@ -311,7 +327,8 @@ def main():
gen_trainer.trainOneDataBatch(batch_size, data_batch_gen)
# TODO: add API for paddle to allow true parameter sharing between different GradientMachines
# so that we do not need to copy shared parameters.
copy_shared_parameters(gen_training_machine, dis_training_machine)
copy_shared_parameters(gen_training_machine,
dis_training_machine)
copy_shared_parameters(gen_training_machine, generator_machine)
dis_trainer.finishTrainPass()
@ -319,11 +336,14 @@ def main():
# At the end of each pass, save the generated samples/images
fake_samples = get_fake_samples(generator_machine, batch_size, noise)
if data_source == "uniform":
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass))
plot2DScatter(fake_samples, "./%s_samples/train_pass%s.png" %
(data_source, train_pass))
else:
save_images(fake_samples, "./%s_samples/train_pass%s.png" % (data_source, train_pass))
save_images(fake_samples, "./%s_samples/train_pass%s.png" %
(data_source, train_pass))
dis_trainer.finishTrain()
gen_trainer.finishTrain()
if __name__ == '__main__':
main()

@ -13,7 +13,6 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This configuration is a demonstration of how to implement the stacked LSTM
with residual connections, i.e. an LSTM layer takes the sum of the hidden states
@ -46,7 +45,8 @@ is_predict = get_config_arg('is_predict', bool, False)
trn = 'data/train.list' if not is_predict else None
tst = 'data/test.list' if not is_predict else 'data/pred.list'
process = 'process' if not is_predict else 'process_predict'
define_py_data_sources2(train_list=trn,
define_py_data_sources2(
train_list=trn,
test_list=tst,
module="dataprovider_emb",
obj=process,
@ -58,8 +58,7 @@ settings(
learning_rate=2e-3,
learning_method=AdamOptimizer(),
regularization=L2Regularization(8e-4),
gradient_clipping_threshold=25
)
gradient_clipping_threshold=25)
bias_attr = ParamAttr(initial_std=0., l2_rate=0.)
@ -73,17 +72,15 @@ for i in range(3):
# The input to the current layer is the sum of the hidden state
# and input of the previous layer.
current_input = addto_layer(input=[previous_input, previous_hidden_state])
hidden_state = simple_lstm(input=current_input, size=128,
lstm_cell_attr=ExtraAttr(drop_rate=0.1))
hidden_state = simple_lstm(
input=current_input, size=128, lstm_cell_attr=ExtraAttr(drop_rate=0.1))
previous_input, previous_hidden_state = current_input, hidden_state
lstm = previous_hidden_state
lstm_last = pooling_layer(input=lstm, pooling_type=MaxPooling())
output = fc_layer(input=lstm_last, size=2,
bias_attr=bias_attr,
act=SoftmaxActivation())
output = fc_layer(
input=lstm_last, size=2, bias_attr=bias_attr, act=SoftmaxActivation())
if is_predict:
maxid = maxid_layer(output)

@ -69,7 +69,6 @@ def extract_dict_features(pair_file, feature_file):
feature_out.write(feature_str + '\n')
if __name__ == '__main__':
usage = '-p pair_file -f feature_file'

@ -30,8 +30,7 @@ def hook(settings, word_dict, label_dict, predicate_dict, **kwargs):
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(word_dict)),
integer_value_sequence(len(predicate_dict)),
integer_value_sequence(2),
integer_value_sequence(len(predicate_dict)), integer_value_sequence(2),
integer_value_sequence(len(label_dict))
]
@ -40,8 +39,12 @@ def get_batch_size(yeild_data):
return len(yeild_data[0])
@provider(init_hook=hook, should_shuffle=True, calc_batch_size=get_batch_size,
can_over_batch_size=False, cache=CacheType.CACHE_PASS_IN_MEM)
@provider(
init_hook=hook,
should_shuffle=True,
calc_batch_size=get_batch_size,
can_over_batch_size=False,
cache=CacheType.CACHE_PASS_IN_MEM)
def process(settings, file_name):
with open(file_name, 'r') as fdata:
for line in fdata:

@ -47,7 +47,6 @@ if not is_predict:
w = line.strip()
predicate_dict[w] = i
if is_test:
train_list_file = None
@ -57,9 +56,11 @@ if not is_predict:
test_list=test_list_file,
module='dataprovider',
obj='process',
args={'word_dict': word_dict,
args={
'word_dict': word_dict,
'label_dict': label_dict,
'predicate_dict': predicate_dict })
'predicate_dict': predicate_dict
})
word_dict_len = len(word_dict)
label_dict_len = len(label_dict)
@ -77,24 +78,16 @@ mark_dim = 5
hidden_dim = 512
depth = 8
########################### Optimizer #######################################
settings(
batch_size=150,
learning_method=MomentumOptimizer(momentum=0),
learning_rate=2e-2,
regularization=L2Regularization(8e-4),
is_async=False,
model_average=ModelAverage(average_window=0.5,
max_average_window=10000),
)
model_average=ModelAverage(
average_window=0.5, max_average_window=10000), )
####################################### network ##############################
#8 features and 1 target
@ -108,22 +101,28 @@ ctx_p1 = data_layer(name='ctx_p1_data', size=word_dict_len)
ctx_p2 = data_layer(name='ctx_p2_data', size=word_dict_len)
mark = data_layer(name='mark_data', size=mark_dict_len)
if not is_predict:
target = data_layer(name='target', size=label_dict_len)
default_std = 1 / math.sqrt(hidden_dim) / 3.0
emb_para = ParameterAttribute(name='emb', initial_std=0., learning_rate=0.)
std_0 = ParameterAttribute(initial_std=0.)
std_default = ParameterAttribute(initial_std=default_std)
predicate_embedding = embedding_layer(size=word_dim, input=predicate, param_attr=ParameterAttribute(name='vemb',initial_std=default_std))
mark_embedding = embedding_layer(name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
predicate_embedding = embedding_layer(
size=word_dim,
input=predicate,
param_attr=ParameterAttribute(
name='vemb', initial_std=default_std))
mark_embedding = embedding_layer(
name='word_ctx-in_embedding', size=mark_dim, input=mark, param_attr=std_0)
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
emb_layers = [embedding_layer(size=word_dim, input=x, param_attr=emb_para) for x in word_input]
emb_layers = [
embedding_layer(
size=word_dim, input=x, param_attr=emb_para) for x in word_input
]
emb_layers.append(predicate_embedding)
emb_layers.append(mark_embedding)
@ -131,14 +130,18 @@ hidden_0 = mixed_layer(
name='hidden0',
size=hidden_dim,
bias_attr=std_default,
input=[ full_matrix_projection(input=emb, param_attr=std_default ) for emb in emb_layers ])
input=[
full_matrix_projection(
input=emb, param_attr=std_default) for emb in emb_layers
])
mix_hidden_lr = 1e-3
lstm_para_attr = ParameterAttribute(initial_std=0.0, learning_rate=1.0)
hidden_para_attr = ParameterAttribute(initial_std=default_std, learning_rate=mix_hidden_lr)
hidden_para_attr = ParameterAttribute(
initial_std=default_std, learning_rate=mix_hidden_lr)
lstm_0 = lstmemory(name='lstm0',
lstm_0 = lstmemory(
name='lstm0',
input=hidden_0,
act=ReluActivation(),
gate_act=SigmoidActivation(),
@ -149,18 +152,21 @@ lstm_0 = lstmemory(name='lstm0',
#stack L-LSTM and R-LSTM with direct edges
input_tmp = [hidden_0, lstm_0]
for i in range(1, depth):
mix_hidden = mixed_layer(name='hidden'+str(i),
mix_hidden = mixed_layer(
name='hidden' + str(i),
size=hidden_dim,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
]
)
lstm = lstmemory(name='lstm'+str(i),
input=[
full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
])
lstm = lstmemory(
name='lstm' + str(i),
input=mix_hidden,
act=ReluActivation(),
gate_act=SigmoidActivation(),
@ -171,44 +177,42 @@ for i in range(1, depth):
input_tmp = [mix_hidden, lstm]
feature_out = mixed_layer(name='output',
feature_out = mixed_layer(
name='output',
size=label_dict_len,
bias_attr=std_default,
input=[full_matrix_projection(input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(input=input_tmp[1], param_attr=lstm_para_attr)
],
)
input=[
full_matrix_projection(
input=input_tmp[0], param_attr=hidden_para_attr),
full_matrix_projection(
input=input_tmp[1], param_attr=lstm_para_attr)
], )
if not is_predict:
crf_l = crf_layer( name = 'crf',
crf_l = crf_layer(
name='crf',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=ParameterAttribute(name='crfw',initial_std=default_std, learning_rate=mix_hidden_lr)
)
param_attr=ParameterAttribute(
name='crfw', initial_std=default_std, learning_rate=mix_hidden_lr))
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
crf_dec_l = crf_decoding_layer(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
label=target,
param_attr=ParameterAttribute(name='crfw')
)
param_attr=ParameterAttribute(name='crfw'))
eval = sum_evaluator(input=crf_dec_l)
outputs(crf_l)
else:
crf_dec_l = crf_decoding_layer(name = 'crf_dec_l',
crf_dec_l = crf_decoding_layer(
name='crf_dec_l',
size=label_dict_len,
input=feature_out,
param_attr=ParameterAttribute(name='crfw')
)
param_attr=ParameterAttribute(name='crfw'))
outputs(crf_dec_l)

@ -26,7 +26,8 @@ UNK_IDX = 0
class Prediction():
def __init__(self, train_conf, dict_file, model_dir, label_file, predicate_dict_file):
def __init__(self, train_conf, dict_file, model_dir, label_file,
predicate_dict_file):
"""
train_conf: trainer configure.
dict_file: word dictionary file name.
@ -44,24 +45,17 @@ class Prediction():
len_pred = len(self.predicate_dict)
conf = parse_config(
train_conf,
'dict_len=' + str(len_dict) +
',label_len=' + str(len_label) +
',pred_len=' + str(len_pred) +
',is_predict=True')
train_conf, 'dict_len=' + str(len_dict) + ',label_len=' +
str(len_label) + ',pred_len=' + str(len_pred) + ',is_predict=True')
self.network = swig_paddle.GradientMachine.createFromConfigProto(
conf.model_config)
self.network.loadParameters(model_dir)
slots = [
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_dict),
integer_value_sequence(len_pred),
integer_value_sequence(2)
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_dict), integer_value_sequence(len_dict),
integer_value_sequence(len_pred), integer_value_sequence(2)
]
self.converter = DataProviderConverter(slots)
@ -78,6 +72,7 @@ class Prediction():
for line_count, line in enumerate(open(predicate_dict_file, 'r')):
self.predicate_dict[line.strip()] = line_count
def get_data(self, data_file):
"""
Get input data of paddle format.
@ -90,7 +85,8 @@ class Prediction():
sen_len = len(words)
word_slot = [self.dict.get(w, UNK_IDX) for w in words]
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)] * sen_len
predicate_slot = [self.predicate_dict.get(predicate, UNK_IDX)
] * sen_len
ctx_n2_slot = [self.dict.get(ctx_n2, UNK_IDX)] * sen_len
ctx_n1_slot = [self.dict.get(ctx_n1, UNK_IDX)] * sen_len
ctx_0_slot = [self.dict.get(ctx_0, UNK_IDX)] * sen_len
@ -123,7 +119,8 @@ class Prediction():
def option_parser():
usage = ("python predict.py -c config -w model_dir "
usage = (
"python predict.py -c config -w model_dir "
"-d word dictionary -l label_file -i input_file -p pred_dict_file")
parser = OptionParser(usage="usage: %s [options]" % usage)
parser.add_option(
@ -187,7 +184,8 @@ def main():
output_file = options.output_file
swig_paddle.initPaddle("--use_gpu=0")
predict = Prediction(train_conf, dict_file, model_path, label_file, predict_dict_file)
predict = Prediction(train_conf, dict_file, model_path, label_file,
predict_dict_file)
predict.predict(data_file, output_file)

@ -71,9 +71,7 @@ class SentimentPrediction():
transform word into integer index according to the dictionary.
"""
words = data.strip().split()
word_slot = [
self.word_dict[w] for w in words if w in self.word_dict
]
word_slot = [self.word_dict[w] for w in words if w in self.word_dict]
return word_slot
def batch_predict(self, data_batch):
@ -85,8 +83,8 @@ class SentimentPrediction():
if self.label is None:
print("predicting label is %d" % (lab[0]))
else:
print("predicting label is %s" %
(self.label[lab[0]]))
print("predicting label is %s" % (self.label[lab[0]]))
def option_parser():
usage = "python predict.py -n config -w model_dir -d dictionary -i input_file "
@ -147,5 +145,6 @@ def main():
if len(batch) > 0:
predict.batch_predict(batch)
if __name__ == '__main__':
main()

@ -14,6 +14,13 @@ cd paddle
git submodule update --init --recursive
```
If you already have a local PaddlePaddle repo and have not initialized the submodule, your local submodule folder will be empty. You can simply run the last line of the above codes in your PaddlePaddle home directory to initialize your submodule folder.
If you have already initialized your submodule and you would like to sync with the upstream submodule repo, you can run the following command
```
git submodule update --remote
```
## <span id="requirements">Requirements</span>
To compile the source code, your computer must be equipped with the following dependencies.

@ -122,9 +122,9 @@ The general development workflow with Docker and Bazel is as follows:
git clone --recursive https://github.com/paddlepaddle/paddle
2. Build a development Docker image `paddle:dev` from the source code.
This image contains all the development tools and dependencies of
PaddlePaddle.
2. Build a development Docker image :code:`paddle:dev` from the source
code. This image contains all the development tools and
dependencies of PaddlePaddle.
.. code-block:: bash
@ -140,13 +140,21 @@ The general development workflow with Docker and Bazel is as follows:
.. code-block:: bash
docker run \
-d # run the container in background mode \
--name paddle # we can run a nginx container to serve documents \
-p 2022:22 # so we can SSH into this container \
-v $PWD:/paddle # mount the source code \
-v $HOME/.cache/bazel:/root/.cache/bazel # mount Bazel cache \
-d \
--name paddle \
-p 2022:22 \
-v $PWD:/paddle \
-v $HOME/.cache/bazel:/root/.cache/bazel \
paddle:dev
where :code:`-d` makes the container running in background,
:code:`--name paddle` allows us to run a nginx container to serve
documents in this container, :code:`-p 2022:22` allows us to SSH
into this container, :code:`-v $PWD:/paddle` shares the source code
on the host with the container, :code:`-v
$HOME/.cache/bazel:/root/.cache/bazel` shares Bazel cache on the
host with the container.
4. SSH into the container:
.. code-block:: bash

@ -19,7 +19,6 @@ import socket
import os
import argparse
# configuration for cluster
API = "/api/v1/namespaces/"
JOBSELECTOR = "labelSelector=job-name="
@ -145,8 +144,8 @@ def startPaddle(idMap={}, train_args_dict=None):
if __name__ == '__main__':
parser = argparse.ArgumentParser(prog="start_paddle.py",
description='simple tool for k8s')
parser = argparse.ArgumentParser(
prog="start_paddle.py", description='simple tool for k8s')
args, train_args_list = parser.parse_known_args()
train_args = refine_unknown_args(train_args_list)
train_args_dict = dict(zip(train_args[:-1:2], train_args[1::2]))

@ -15,8 +15,8 @@ limitations under the License. */
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "Internal.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
std::vector<int> GradientMachine::defaultParamTypes = {
PARAMETER_VALUE, PARAMETER_GRADIENT, PARAMETER_MOMENTUM};

@ -16,14 +16,13 @@ limitations under the License. */
#include "PaddleAPI.h"
#include <vector>
#include <algorithm>
#include <vector>
template <typename T1, typename T2>
void staticCastVector(std::vector<T2>* dest, const std::vector<T1>& src) {
dest->resize(src.size());
std::transform(src.begin(),
src.end(),
dest->begin(),
[](T1 t) { return static_cast<T2>(t); });
std::transform(src.begin(), src.end(), dest->begin(), [](T1 t) {
return static_cast<T2>(t);
});
}

@ -12,12 +12,12 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "paddle/math/Matrix.h"
#include "paddle/math/SparseMatrix.h"
#include "paddle/math/CpuSparseMatrix.h"
#include <iostream>
#include <cstring>
#include <iostream>
#include "PaddleAPI.h"
#include "paddle/math/CpuSparseMatrix.h"
#include "paddle/math/SparseMatrix.h"
struct MatrixPrivate {
std::shared_ptr<paddle::Matrix> mat;

@ -16,8 +16,8 @@ limitations under the License. */
#include <stddef.h>
#include <stdint.h>
#include <string>
#include <stdexcept>
#include <string>
#include <vector>
#include "paddle/utils/GlobalConstants.h"
#include "paddle/utils/TypeDefs.h"

@ -12,8 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "paddle/parameter/Parameter.h"
#include "PaddleAPI.h"
struct ParameterPrivate {
std::shared_ptr<paddle::Parameter> sharedPtr;

@ -12,11 +12,11 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
#include "paddle/parameter/ParameterOptimizer.h"
#include "Internal.h"
#include <algorithm>
#include "Internal.h"
#include "PaddleAPI.h"
#include "PaddleAPIPrivate.h"
struct ParameterOptimizerPrivate {
std::unique_ptr<paddle::ParameterOptimizer> optimizer;
@ -36,10 +36,7 @@ struct ParameterTraverseCallbackPrivate {
size_t sparseId) {
std::vector<paddle::VectorPtr> real_vecs;
real_vecs.resize(vecs.size());
std::transform(vecs.begin(),
vecs.end(),
real_vecs.begin(),
[](Vector* v) {
std::transform(vecs.begin(), vecs.end(), real_vecs.begin(), [](Vector* v) {
if (v) {
return *(paddle::VectorPtr*)(v->getSharedPtr());
} else {

@ -12,14 +12,14 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <iterator>
#include <sstream>
#include <vector>
#include "PaddleAPI.h"
#include "paddle/gserver/gradientmachines/GradientMachine.h"
#include "paddle/parameter/Argument.h"
#include "paddle/utils/Flags.h"
#include <vector>
#include <sstream>
#include <algorithm>
#include <iterator>
// used to represent partial sequence
struct Path {

@ -16,12 +16,12 @@ limitations under the License. */
#include "PaddleAPIPrivate.h"
#include <stdlib.h>
#include <memory>
#include <atomic>
#include <memory>
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/trainer/ParamUtil.h"
#include "paddle/trainer/Trainer.h"
#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/trainer/TrainerInternal.h"
#include "paddle/utils/Flags.h"

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save