|
|
@ -75,10 +75,10 @@ void HierarchicalSigmoidLayer::forward(PassType passType) {
|
|
|
|
|
|
|
|
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuOutput_,
|
|
|
|
Matrix::resizeOrCreate(cpuOutput_,
|
|
|
|
output_.value->getHeight(),
|
|
|
|
output_.value->getHeight(),
|
|
|
|
output_.value->getWidth(),
|
|
|
|
output_.value->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
IVector::resizeOrCreate(cpuLabel_, label->getSize(), false);
|
|
|
|
IVector::resizeOrCreate(cpuLabel_, label->getSize(), false);
|
|
|
|
cpuLabel_->copyFrom(*label);
|
|
|
|
cpuLabel_->copyFrom(*label);
|
|
|
|
cpuOutput_->copyFrom(*output_.value);
|
|
|
|
cpuOutput_->copyFrom(*output_.value);
|
|
|
@ -90,10 +90,10 @@ void HierarchicalSigmoidLayer::forward(PassType passType) {
|
|
|
|
if (biases_.get() != NULL) {
|
|
|
|
if (biases_.get() != NULL) {
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuBias_,
|
|
|
|
Matrix::resizeOrCreate(cpuBias_,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
numClasses_ - 1,
|
|
|
|
numClasses_ - 1,
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
cpuBias_->copyFrom(*biases_->getW());
|
|
|
|
cpuBias_->copyFrom(*biases_->getW());
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
cpuBias_ = biases_->getW();
|
|
|
|
cpuBias_ = biases_->getW();
|
|
|
@ -104,15 +104,15 @@ void HierarchicalSigmoidLayer::forward(PassType passType) {
|
|
|
|
MatrixPtr input = getInputValue(i);
|
|
|
|
MatrixPtr input = getInputValue(i);
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuInput_,
|
|
|
|
Matrix::resizeOrCreate(cpuInput_,
|
|
|
|
input->getHeight(),
|
|
|
|
input->getHeight(),
|
|
|
|
input->getWidth(),
|
|
|
|
input->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
Matrix::resizeOrCreate(cpuWeight_,
|
|
|
|
Matrix::resizeOrCreate(cpuWeight_,
|
|
|
|
weights_[i]->getW()->getHeight(),
|
|
|
|
weights_[i]->getW()->getHeight(),
|
|
|
|
weights_[i]->getW()->getWidth(),
|
|
|
|
weights_[i]->getW()->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
cpuInput_->copyFrom(*input);
|
|
|
|
cpuInput_->copyFrom(*input);
|
|
|
|
cpuWeight_->copyFrom(*weights_[i]->getW());
|
|
|
|
cpuWeight_->copyFrom(*weights_[i]->getW());
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
@ -129,8 +129,7 @@ void HierarchicalSigmoidLayer::forward(PassType passType) {
|
|
|
|
*cpuOutput_,
|
|
|
|
*cpuOutput_,
|
|
|
|
-1); // scaleSum
|
|
|
|
-1); // scaleSum
|
|
|
|
preOutput_.value->softrelu(*preOutput_.value);
|
|
|
|
preOutput_.value->softrelu(*preOutput_.value);
|
|
|
|
MatrixPtr sum =
|
|
|
|
MatrixPtr sum = Matrix::create(batchSize, 1, /* trans= */ false, false);
|
|
|
|
Matrix::create(batchSize, 1, /* trans= */ false, false);
|
|
|
|
|
|
|
|
preOutput_.value->rowSum(*sum);
|
|
|
|
preOutput_.value->rowSum(*sum);
|
|
|
|
cpuOutput_->add(*sum);
|
|
|
|
cpuOutput_->add(*sum);
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
@ -156,16 +155,15 @@ void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
|
|
|
|
MatrixPtr biases_grad = biases_->getWGrad();
|
|
|
|
MatrixPtr biases_grad = biases_->getWGrad();
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuBias_,
|
|
|
|
Matrix::resizeOrCreate(cpuBias_,
|
|
|
|
1,
|
|
|
|
1,
|
|
|
|
numClasses_ - 1,
|
|
|
|
numClasses_ - 1,
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
cpuBias_->copyFrom(*biases_grad);
|
|
|
|
cpuBias_->copyFrom(*biases_grad);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|
cpuBias_ = biases_grad;
|
|
|
|
cpuBias_ = biases_grad;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
preOutput_.grad->addByBitCodeBackward(
|
|
|
|
preOutput_.grad->addByBitCodeBackward(numClasses_, *cpuLabel_, *cpuBias_);
|
|
|
|
numClasses_, *cpuLabel_, *cpuBias_);
|
|
|
|
|
|
|
|
if (useGpu) {
|
|
|
|
if (useGpu) {
|
|
|
|
biases_grad->copyFrom(*cpuBias_);
|
|
|
|
biases_grad->copyFrom(*cpuBias_);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
@ -182,15 +180,15 @@ void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
|
|
|
|
MatrixPtr weights_grad = weights_[i]->getWGrad();
|
|
|
|
MatrixPtr weights_grad = weights_[i]->getWGrad();
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuInput_,
|
|
|
|
Matrix::resizeOrCreate(cpuInput_,
|
|
|
|
input->getHeight(),
|
|
|
|
input->getHeight(),
|
|
|
|
input->getWidth(),
|
|
|
|
input->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
Matrix::resizeOrCreate(cpuWeightGrad_,
|
|
|
|
Matrix::resizeOrCreate(cpuWeightGrad_,
|
|
|
|
weights_grad->getHeight(),
|
|
|
|
weights_grad->getHeight(),
|
|
|
|
weights_grad->getWidth(),
|
|
|
|
weights_grad->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
cpuInput_->copyFrom(*input);
|
|
|
|
cpuInput_->copyFrom(*input);
|
|
|
|
cpuWeightGrad_->copyFrom(*weights_grad);
|
|
|
|
cpuWeightGrad_->copyFrom(*weights_grad);
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
@ -213,15 +211,15 @@ void HierarchicalSigmoidLayer::backward(const UpdateCallback& callback) {
|
|
|
|
if (inputGrad) {
|
|
|
|
if (inputGrad) {
|
|
|
|
if (useGpu_) {
|
|
|
|
if (useGpu_) {
|
|
|
|
Matrix::resizeOrCreate(cpuInputGrad_,
|
|
|
|
Matrix::resizeOrCreate(cpuInputGrad_,
|
|
|
|
inputGrad->getHeight(),
|
|
|
|
inputGrad->getHeight(),
|
|
|
|
inputGrad->getWidth(),
|
|
|
|
inputGrad->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
Matrix::resizeOrCreate(cpuWeight_,
|
|
|
|
Matrix::resizeOrCreate(cpuWeight_,
|
|
|
|
weights_[i]->getW()->getHeight(),
|
|
|
|
weights_[i]->getW()->getHeight(),
|
|
|
|
weights_[i]->getW()->getWidth(),
|
|
|
|
weights_[i]->getW()->getWidth(),
|
|
|
|
/* trans */ false,
|
|
|
|
/* trans */ false,
|
|
|
|
false);
|
|
|
|
false);
|
|
|
|
cpuInputGrad_->copyFrom(*inputGrad);
|
|
|
|
cpuInputGrad_->copyFrom(*inputGrad);
|
|
|
|
cpuWeight_->copyFrom(*weights_[i]->getW());
|
|
|
|
cpuWeight_->copyFrom(*weights_[i]->getW());
|
|
|
|
} else {
|
|
|
|
} else {
|
|
|
|