|
|
|
@ -35,6 +35,12 @@ def parse_args():
|
|
|
|
|
parser = argparse.ArgumentParser("mnist model benchmark.")
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
'--batch_size', type=int, default=128, help='The minibatch size.')
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
'--skip_batch_num',
|
|
|
|
|
type=int,
|
|
|
|
|
default=5,
|
|
|
|
|
help='The first num of minibatch num to skip, for better performance test'
|
|
|
|
|
)
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
'--iterations', type=int, default=35, help='The number of minibatches.')
|
|
|
|
|
parser.add_argument(
|
|
|
|
@ -53,19 +59,14 @@ def parse_args():
|
|
|
|
|
'--use_nvprof',
|
|
|
|
|
action='store_true',
|
|
|
|
|
help='If set, use nvprof for CUDA.')
|
|
|
|
|
parser.add_argument(
|
|
|
|
|
'--with_test',
|
|
|
|
|
action='store_true',
|
|
|
|
|
help='If set, test the testset during training.')
|
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_arguments(args):
|
|
|
|
|
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
|
|
|
|
|
vars(args)['device'] == 'GPU')
|
|
|
|
|
print('----------- Configuration Arguments -----------')
|
|
|
|
|
for arg, value in sorted(vars(args).iteritems()):
|
|
|
|
|
print('%s: %s' % (arg, value))
|
|
|
|
|
print('------------------------------------------------')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def cnn_model(data):
|
|
|
|
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
|
|
|
|
input=data,
|
|
|
|
@ -161,16 +162,22 @@ def run_benchmark(model, args):
|
|
|
|
|
paddle.dataset.mnist.train(), batch_size=args.batch_size)
|
|
|
|
|
|
|
|
|
|
accuracy = fluid.average.WeightedAverage()
|
|
|
|
|
iters, num_samples, start_time = 0, 0, time.time()
|
|
|
|
|
for pass_id in range(args.pass_num):
|
|
|
|
|
accuracy.reset()
|
|
|
|
|
pass_start = time.time()
|
|
|
|
|
train_accs = []
|
|
|
|
|
train_losses = []
|
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
|
|
|
if iters == args.skip_batch_num:
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
num_samples = 0
|
|
|
|
|
if iters == args.iterations:
|
|
|
|
|
break
|
|
|
|
|
img_data = np.array(
|
|
|
|
|
map(lambda x: x[0].reshape([1, 28, 28]), data)).astype(DTYPE)
|
|
|
|
|
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
|
|
|
|
y_data = y_data.reshape([len(y_data), 1])
|
|
|
|
|
|
|
|
|
|
start = time.time()
|
|
|
|
|
outs = exe.run(
|
|
|
|
|
fluid.default_main_program(),
|
|
|
|
|
feed={"pixel": img_data,
|
|
|
|
@ -178,21 +185,36 @@ def run_benchmark(model, args):
|
|
|
|
|
fetch_list=[avg_cost, batch_acc, batch_size_tensor]
|
|
|
|
|
) # The accuracy is the accumulation of batches, but not the current batch.
|
|
|
|
|
accuracy.add(value=outs[1], weight=outs[2])
|
|
|
|
|
end = time.time()
|
|
|
|
|
iters += 1
|
|
|
|
|
num_samples += len(y_data)
|
|
|
|
|
loss = np.array(outs[0])
|
|
|
|
|
acc = np.array(outs[1])
|
|
|
|
|
print("pass=%d, batch=%d, loss=%f, error=%f, elapse=%f" %
|
|
|
|
|
(pass_id, batch_id, loss, 1 - acc, (end - start) / 1000))
|
|
|
|
|
|
|
|
|
|
pass_end = time.time()
|
|
|
|
|
|
|
|
|
|
train_avg_acc = accuracy.eval()
|
|
|
|
|
train_losses.append(loss)
|
|
|
|
|
train_accs.append(acc)
|
|
|
|
|
print("Pass: %d, Iter: %d, Loss: %f, Accuracy: %f" %
|
|
|
|
|
(pass_id, iters, loss, acc))
|
|
|
|
|
|
|
|
|
|
print("Pass: %d, Loss: %f, Train Accuray: %f\n" %
|
|
|
|
|
(pass_id, np.mean(train_losses), np.mean(train_accs)))
|
|
|
|
|
train_elapsed = time.time() - start_time
|
|
|
|
|
examples_per_sec = num_samples / train_elapsed
|
|
|
|
|
|
|
|
|
|
print('\nTotal examples: %d, total time: %.5f, %.5f examples/sed\n' %
|
|
|
|
|
(num_samples, train_elapsed, examples_per_sec))
|
|
|
|
|
# evaluation
|
|
|
|
|
if args.with_test:
|
|
|
|
|
test_avg_acc = eval_test(exe, batch_acc, batch_size_tensor,
|
|
|
|
|
inference_program)
|
|
|
|
|
exit(0)
|
|
|
|
|
|
|
|
|
|
print("pass=%d, train_avg_acc=%f, test_avg_acc=%f, elapse=%f" %
|
|
|
|
|
(pass_id, train_avg_acc, test_avg_acc,
|
|
|
|
|
(pass_end - pass_start) / 1000))
|
|
|
|
|
|
|
|
|
|
def print_arguments(args):
|
|
|
|
|
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
|
|
|
|
|
vars(args)['device'] == 'GPU')
|
|
|
|
|
print('----------- mnist Configuration Arguments -----------')
|
|
|
|
|
for arg, value in sorted(vars(args).iteritems()):
|
|
|
|
|
print('%s: %s' % (arg, value))
|
|
|
|
|
print('------------------------------------------------')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|