|
|
|
@ -1500,7 +1500,7 @@ def img_pool_layer(input, pool_size, name=None,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def __img_norm_layer__(name, input, size, norm_type, scale, power,
|
|
|
|
|
num_channels, blocked, layer_attr):
|
|
|
|
|
num_channels, blocked=0, layer_attr):
|
|
|
|
|
if num_channels is None:
|
|
|
|
|
assert input.num_filters is not None
|
|
|
|
|
num_channels = input.num_filters
|
|
|
|
@ -1522,9 +1522,9 @@ def __img_norm_layer__(name, input, size, norm_type, scale, power,
|
|
|
|
|
@layer_support()
|
|
|
|
|
def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
|
|
|
|
|
name=None, num_channels=None,
|
|
|
|
|
blocked=0, layer_attr=None):
|
|
|
|
|
layer_attr=None):
|
|
|
|
|
"""
|
|
|
|
|
Convolution cross-map-response-normalize layer.
|
|
|
|
|
Response normalization across feature maps.
|
|
|
|
|
The details please refer to
|
|
|
|
|
`Alex's paper <http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf>`_.
|
|
|
|
|
|
|
|
|
@ -1532,7 +1532,7 @@ def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
|
|
|
|
|
:type name: None|basestring
|
|
|
|
|
:param input: layer's input.
|
|
|
|
|
:type input: LayerOutput
|
|
|
|
|
:param size: cross map response size.
|
|
|
|
|
:param size: Normalize in number of :math:`size` feature maps.
|
|
|
|
|
:type size: int
|
|
|
|
|
:param scale: The hyper-parameter.
|
|
|
|
|
:type scale: float
|
|
|
|
@ -1547,30 +1547,7 @@ def img_cmrnorm_layer(input, size, scale=0.0128, power=0.75,
|
|
|
|
|
:rtype: LayerOutput
|
|
|
|
|
"""
|
|
|
|
|
return __img_norm_layer__(name, input, size, "cmrnorm-projection", scale,
|
|
|
|
|
power, num_channels, blocked, layer_attr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@wrap_name_default("rnorm")
|
|
|
|
|
@layer_support()
|
|
|
|
|
def img_rnorm_layer(input, size, scale, power, name=None, num_channels=None,
|
|
|
|
|
layer_attr=None):
|
|
|
|
|
"""
|
|
|
|
|
Normalize the input in local region, namely response normalization
|
|
|
|
|
across feature maps.
|
|
|
|
|
|
|
|
|
|
:param name: The name of this layer.
|
|
|
|
|
:rtype name: None|basestring
|
|
|
|
|
:param input: The input of this layer.
|
|
|
|
|
:param size:
|
|
|
|
|
:param scale:
|
|
|
|
|
:param power:
|
|
|
|
|
:param num_channels:
|
|
|
|
|
:param layer_attr:
|
|
|
|
|
:return: LayerOutput object.
|
|
|
|
|
:rtype: LayerOutput
|
|
|
|
|
"""
|
|
|
|
|
return __img_norm_layer__(name, input, size, 'rnorm', scale, power,
|
|
|
|
|
num_channels, 0, layer_attr)
|
|
|
|
|
power, num_channels, 0, layer_attr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@wrap_bias_attr_default()
|
|
|
|
|