|
|
|
@ -25,94 +25,31 @@ PaddlePaddle支持使用pip快速安装,目前支持CentOS 6以上, Ubuntu 14.
|
|
|
|
|
创建一个 housing.py 并粘贴此Python代码:
|
|
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
|
|
import sys
|
|
|
|
|
|
|
|
|
|
import math
|
|
|
|
|
import numpy
|
|
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
|
import paddle
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
|
|
|
|
def train(save_dirname):
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
|
y_predict = fluid.layers.fc(input=x, size=1, act=None)
|
|
|
|
|
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
|
|
|
|
|
|
|
|
|
|
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
|
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
|
|
|
|
|
optimize_ops, params_grads = sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
|
|
BATCH_SIZE = 20
|
|
|
|
|
|
|
|
|
|
train_reader = paddle.batch(
|
|
|
|
|
paddle.reader.shuffle(paddle.dataset.uci_housing.train(), buf_size=500), batch_size=BATCH_SIZE)
|
|
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
|
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
|
|
main_program = fluid.default_main_program()
|
|
|
|
|
|
|
|
|
|
PASS_NUM = 100
|
|
|
|
|
for pass_id in range(PASS_NUM):
|
|
|
|
|
for data in train_reader():
|
|
|
|
|
avg_loss_value, = exe.run(main_program,
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=[avg_cost])
|
|
|
|
|
if avg_loss_value[0] < 10.0:
|
|
|
|
|
if save_dirname is not None:
|
|
|
|
|
fluid.io.save_inference_model(save_dirname, ['x'],
|
|
|
|
|
[y_predict], exe)
|
|
|
|
|
return
|
|
|
|
|
if math.isnan(float(avg_loss_value)):
|
|
|
|
|
sys.exit("got NaN loss, training failed.")
|
|
|
|
|
raise AssertionError("Fit a line cost is too large, {0:2.2}".format(
|
|
|
|
|
avg_loss_value[0]))
|
|
|
|
|
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place=place)
|
|
|
|
|
feeder = fluid.DataFeeder(place=place, feed_list=[x])
|
|
|
|
|
|
|
|
|
|
def infer(save_dirname):
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
with fluid.scope_guard(fluid.core.Scope()):
|
|
|
|
|
parameter_model = paddle.dataset.uci_housing.fluid_model()
|
|
|
|
|
|
|
|
|
|
probs = []
|
|
|
|
|
[inference_program, feed_target_names,fetch_targets] = \
|
|
|
|
|
fluid.io.load_inference_model(parameter_model, exe)
|
|
|
|
|
|
|
|
|
|
inference_scope = fluid.core.Scope()
|
|
|
|
|
with fluid.scope_guard(inference_scope):
|
|
|
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
|
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
|
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
|
|
|
# we want to obtain data from using fetch operators).
|
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
|
predict_reader = paddle.batch(paddle.dataset.uci_housing.predict_reader(), batch_size=20)
|
|
|
|
|
|
|
|
|
|
# The input's dimension should be 2-D and the second dim is 13
|
|
|
|
|
# The input data should be >= 0
|
|
|
|
|
batch_size = 10
|
|
|
|
|
tensor_x = numpy.random.uniform(0, 10,
|
|
|
|
|
[batch_size, 13]).astype("float32")
|
|
|
|
|
assert feed_target_names[0] == 'x'
|
|
|
|
|
results = exe.run(inference_program,
|
|
|
|
|
feed={feed_target_names[0]: tensor_x},
|
|
|
|
|
results = []
|
|
|
|
|
for data in predict_reader():
|
|
|
|
|
result = exe.run(inference_program,
|
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
|
fetch_list=fetch_targets)
|
|
|
|
|
probs.append(results)
|
|
|
|
|
results.append(result)
|
|
|
|
|
|
|
|
|
|
for i in xrange(len(probs)):
|
|
|
|
|
print(probs[i][0] * 1000)
|
|
|
|
|
print('Predicted price: ${0}'.format(probs[i][0] * 1000))
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
# Directory for saving the trained model
|
|
|
|
|
save_dirname = "fit_a_line.inference.model"
|
|
|
|
|
|
|
|
|
|
train(save_dirname)
|
|
|
|
|
infer(save_dirname)
|
|
|
|
|
|
|
|
|
|
if __name__=="__main__":
|
|
|
|
|
main()
|
|
|
|
|
|
|
|
|
|
for res in results:
|
|
|
|
|
for i in xrange(len(res[0])):
|
|
|
|
|
print 'Predicted price: ${:,.2f}'.format(res[0][i][0] * 1000)
|
|
|
|
|
执行 :code:`python housing.py` 瞧! 它应该打印出预测住房数据的清单。
|
|
|
|
|